Robust Learning of Physics Informed Neural Networks
- URL: http://arxiv.org/abs/2110.13330v1
- Date: Tue, 26 Oct 2021 00:10:57 GMT
- Title: Robust Learning of Physics Informed Neural Networks
- Authors: Chandrajit Bajaj, Luke McLennan, Timothy Andeen, Avik Roy
- Abstract summary: Physics-informed Neural Networks (PINNs) have been shown to be effective in solving partial differential equations.
This paper shows that a PINN can be sensitive to errors in training data and overfit itself in dynamically propagating these errors over the domain of the solution of the PDE.
- Score: 2.86989372262348
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Physics-informed Neural Networks (PINNs) have been shown to be effective in
solving partial differential equations by capturing the physics induced
constraints as a part of the training loss function. This paper shows that a
PINN can be sensitive to errors in training data and overfit itself in
dynamically propagating these errors over the domain of the solution of the
PDE. It also shows how physical regularizations based on continuity criteria
and conservation laws fail to address this issue and rather introduce problems
of their own causing the deep network to converge to a physics-obeying local
minimum instead of the global minimum. We introduce Gaussian Process (GP) based
smoothing that recovers the performance of a PINN and promises a robust
architecture against noise/errors in measurements. Additionally, we illustrate
an inexpensive method of quantifying the evolution of uncertainty based on the
variance estimation of GPs on boundary data. Robust PINN performance is also
shown to be achievable by choice of sparse sets of inducing points based on
sparsely induced GPs. We demonstrate the performance of our proposed methods
and compare the results from existing benchmark models in literature for
time-dependent Schr\"odinger and Burgers' equations.
Related papers
- Improving PINNs By Algebraic Inclusion of Boundary and Initial Conditions [0.1874930567916036]
"AI for Science" aims to solve fundamental scientific problems using AI techniques.
In this work we explore the possibility of changing the model being trained from being just a neural network to being a non-linear transformation of it.
This reduces the number of terms in the loss function than the standard PINN losses.
arXiv Detail & Related papers (2024-07-30T11:19:48Z) - DFA-GNN: Forward Learning of Graph Neural Networks by Direct Feedback Alignment [57.62885438406724]
Graph neural networks are recognized for their strong performance across various applications.
BP has limitations that challenge its biological plausibility and affect the efficiency, scalability and parallelism of training neural networks for graph-based tasks.
We propose DFA-GNN, a novel forward learning framework tailored for GNNs with a case study of semi-supervised learning.
arXiv Detail & Related papers (2024-06-04T07:24:51Z) - Physics-Informed Deep Learning of Rate-and-State Fault Friction [0.0]
We develop a multi-network PINN for both the forward problem and for direct inversion of nonlinear fault friction parameters.
We present the computational PINN framework for strike-slip faults in 1D and 2D subject to rate-and-state friction.
We find that the network for the parameter inversion at the fault performs much better than the network for material displacements to which it is coupled.
arXiv Detail & Related papers (2023-12-14T23:53:25Z) - Implicit Stochastic Gradient Descent for Training Physics-informed
Neural Networks [51.92362217307946]
Physics-informed neural networks (PINNs) have effectively been demonstrated in solving forward and inverse differential equation problems.
PINNs are trapped in training failures when the target functions to be approximated exhibit high-frequency or multi-scale features.
In this paper, we propose to employ implicit gradient descent (ISGD) method to train PINNs for improving the stability of training process.
arXiv Detail & Related papers (2023-03-03T08:17:47Z) - Tunable Complexity Benchmarks for Evaluating Physics-Informed Neural
Networks on Coupled Ordinary Differential Equations [64.78260098263489]
In this work, we assess the ability of physics-informed neural networks (PINNs) to solve increasingly-complex coupled ordinary differential equations (ODEs)
We show that PINNs eventually fail to produce correct solutions to these benchmarks as their complexity increases.
We identify several reasons why this may be the case, including insufficient network capacity, poor conditioning of the ODEs, and high local curvature, as measured by the Laplacian of the PINN loss.
arXiv Detail & Related papers (2022-10-14T15:01:32Z) - Enhanced Physics-Informed Neural Networks with Augmented Lagrangian
Relaxation Method (AL-PINNs) [1.7403133838762446]
Physics-Informed Neural Networks (PINNs) are powerful approximators of solutions to nonlinear partial differential equations (PDEs)
We propose an Augmented Lagrangian relaxation method for PINNs (AL-PINNs)
We demonstrate through various numerical experiments that AL-PINNs yield a much smaller relative error compared with that of state-of-the-art adaptive loss-balancing algorithms.
arXiv Detail & Related papers (2022-04-29T08:33:11Z) - Learning Physics-Informed Neural Networks without Stacked
Back-propagation [82.26566759276105]
We develop a novel approach that can significantly accelerate the training of Physics-Informed Neural Networks.
In particular, we parameterize the PDE solution by the Gaussian smoothed model and show that, derived from Stein's Identity, the second-order derivatives can be efficiently calculated without back-propagation.
Experimental results show that our proposed method can achieve competitive error compared to standard PINN training but is two orders of magnitude faster.
arXiv Detail & Related papers (2022-02-18T18:07:54Z) - How to Avoid Trivial Solutions in Physics-Informed Neural Networks [0.0]
We investigate the prediction performance of PINNs with respect to the number of collocation points used to enforce the physics-based penalty terms.
We show that PINNs can fail, learning a trivial solution that fulfills the physics-derived penalty term by definition.
We have developed an alternative sampling approach and a new penalty term enabling us to remedy this core problem of PINNs in data-scarce settings with competitive results.
arXiv Detail & Related papers (2021-12-10T15:54:54Z) - Physics-Informed Neural Operator for Learning Partial Differential
Equations [55.406540167010014]
PINO is the first hybrid approach incorporating data and PDE constraints at different resolutions to learn the operator.
The resulting PINO model can accurately approximate the ground-truth solution operator for many popular PDE families.
arXiv Detail & Related papers (2021-11-06T03:41:34Z) - Stochastic Graph Neural Networks [123.39024384275054]
Graph neural networks (GNNs) model nonlinear representations in graph data with applications in distributed agent coordination, control, and planning.
Current GNN architectures assume ideal scenarios and ignore link fluctuations that occur due to environment, human factors, or external attacks.
In these situations, the GNN fails to address its distributed task if the topological randomness is not considered accordingly.
arXiv Detail & Related papers (2020-06-04T08:00:00Z) - A nonlocal physics-informed deep learning framework using the
peridynamic differential operator [0.0]
We develop a nonlocal PINN approach using the Peridynamic Differential Operator (PDDO)---a numerical method which incorporates long-range interactions and removes spatial derivatives in the governing equations.
Because the PDDO functions can be readily incorporated in the neural network architecture, the nonlocality does not degrade the performance of modern deep-learning algorithms.
We document the superior behavior of nonlocal PINN with respect to local PINN in both solution accuracy and parameter inference.
arXiv Detail & Related papers (2020-05-31T06:26:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.