論文の概要: Advancing Unsupervised Low-light Image Enhancement: Noise Estimation, Illumination Interpolation, and Self-Regulation
- arxiv url: http://arxiv.org/abs/2305.10223v4
- Date: Tue, 4 Jun 2024 10:52:16 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-06 14:36:23.597026
- Title: Advancing Unsupervised Low-light Image Enhancement: Noise Estimation, Illumination Interpolation, and Self-Regulation
- Title(参考訳): 教師なし低照度画像の強化:騒音推定、照明補間、自己規制
- Authors: Xiaofeng Liu, Jiaxin Gao, Xin Fan, Risheng Liu,
- Abstract要約: 低光画像強調(LLIE)技術は、画像の詳細の保存とコントラストの強化に顕著な進歩をもたらした。
これらのアプローチは、動的ノイズを効率的に緩和し、様々な低照度シナリオを収容する上で、永続的な課題に直面する。
まず,低照度画像の雑音レベルを迅速かつ高精度に推定する方法を提案する。
次に、照明と入力の一般的な制約を満たすために、Learningable Illumination Interpolator (LII) を考案する。
- 参考スコア(独自算出の注目度): 55.07472635587852
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Contemporary Low-Light Image Enhancement (LLIE) techniques have made notable advancements in preserving image details and enhancing contrast, achieving commendable results on specific datasets. Nevertheless, these approaches encounter persistent challenges in efficiently mitigating dynamic noise and accommodating diverse low-light scenarios. Insufficient constraints on complex pixel-wise mapping learning lead to overfitting to specific types of noise and artifacts associated with low-light conditions, reducing effectiveness in variable lighting scenarios. To this end, we first propose a method for estimating the noise level in low light images in a quick and accurate way. This facilitates precise denoising, prevents over-smoothing, and adapts to dynamic noise patterns. Subsequently, we devise a Learnable Illumination Interpolator (LII), which employs learnlable interpolation operations between the input and unit vector to satisfy general constraints between illumination and input. Finally, we introduce a self-regularization loss that incorporates intrinsic image properties and essential visual attributes to guide the output towards meeting human visual expectations. Comprehensive experiments validate the competitiveness of our proposed algorithm in both qualitative and quantitative assessments. Notably, our noise estimation method, with linear time complexity and suitable for various denoisers, significantly improves both denoising and enhancement performance. Benefiting from this, our approach achieves a 0.675dB PSNR improvement on the LOL dataset and 0.818dB on the MIT dataset on LLIE task, even compared to supervised methods. The source code is available at \href{https://doi.org/10.5281/zenodo.11463142}{this DOI repository} and the specific code for noise estimation can be found at \href{https://github.com/GoogolplexGoodenough/noise_estimate}{this separate GitHub link}.
- Abstract(参考訳): LLIE(Contemporary Low-Light Image Enhancement)技術は、画像の詳細の保存とコントラストの強化において顕著な進歩を遂げ、特定のデータセットに対する賞賛可能な結果を実現している。
それでもこれらのアプローチは、ダイナミックノイズを効率的に緩和し、様々な低照度シナリオを収容する上で、永続的な課題に直面する。
複雑な画素マッピング学習における十分でない制約は、低照度条件に関連する特定の種類のノイズやアーティファクトに過度に適合し、可変照明シナリオの有効性を低下させる。
そこで本研究では,低照度画像の雑音レベルを迅速かつ高精度に推定する手法を提案する。
これにより、正確に騒音を識別し、過度なスムーシングを防ぎ、ダイナミックノイズパターンに適応する。
その後、入力と単位ベクトル間の学習可能な補間演算を用いて、照明と入力の一般的な制約を満たすLearnerable Illumination Interpolator (LII) を考案する。
最後に、本研究は、本質的な画像特性と本質的な視覚特性を取り入れた自己正規化損失を導入し、人間の視覚的期待を満たすためのアウトプットを導出する。
定性評価と定量的評価の両方において,提案アルゴリズムの競争性を総合的に検証した。
特に, 騒音推定法は, 線形時間複雑であり, 各種騒音対策に適しており, 騒音低減性能と騒音改善性能を著しく向上させる。
そこで本手法は,LLIEタスク上のMITデータセット上で0.675dBPSNR,LLIEタスク上で0.818dBの改善を実現している。
ソースコードは \href{https://doi.org/10.5281/zenodo.11463142}{this DOI repository} で入手でき、ノイズ推定の具体的なコードは \href{https://github.com/GoogolplexGoodenough/noise_estimate}{this separate GitHub link} で見ることができる。
関連論文リスト
- Multi-Scale Denoising in the Feature Space for Low-Light Instance Segmentation [2.642212767247493]
低照度画像のインスタンスセグメンテーションはほとんど探索されていない。
提案手法は特徴抽出器に重み付けされた非局所ブロック(wNLB)を実装する。
実世界の騒音特性に対するネットワークの適応性を高めるため,各層に学習可能な重みを導入する。
論文 参考訳(メタデータ) (2024-02-28T13:07:16Z) - Instance Segmentation in the Dark [43.85818645776587]
暗黒領域のインスタンスセグメンテーションを深く見て、低照度推論精度を大幅に向上させるテクニックをいくつか導入する。
本稿では,適応重み付きダウンサンプリング層,スムーズな指向性畳み込みブロック,外乱抑制学習に依存する新しい学習手法を提案する。
実世界の低照度インスタンスセグメンテーションデータセットを,2万組以上の低照度/通常照度画像と,インスタンスレベルのピクセル単位のアノテーションでキャプチャする。
論文 参考訳(メタデータ) (2023-04-27T16:02:29Z) - Enhancing convolutional neural network generalizability via low-rank weight approximation [6.763245393373041]
十分なノイズ処理は、画像処理にとって重要な第一歩であることが多い。
ディープニューラルネットワーク(DNN)は画像のノイズ化に広く利用されている。
本研究では,タッカー低ランクテンソル近似に基づく自己教師付き画像復調フレームワークを提案する。
論文 参考訳(メタデータ) (2022-09-26T14:11:05Z) - Zero-shot Blind Image Denoising via Implicit Neural Representations [77.79032012459243]
暗黙的ニューラル表現(INR)のアーキテクチャ的帰納的バイアスを利用した代替的認知戦略を提案する。
提案手法は,低雑音シナリオや実雑音シナリオの広い範囲において,既存のゼロショット復調手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2022-04-05T12:46:36Z) - Adaptive Unfolding Total Variation Network for Low-Light Image
Enhancement [6.531546527140475]
sRGB空間における既存の拡張アルゴリズムのほとんどは、低可視性問題にのみ焦点をあてるか、仮説的雑音レベルの下でノイズを抑圧する。
本稿では,実際のsRGB低照度画像から雑音レベルを近似する適応展開全変動ネットワーク(UTVNet)を提案する。
実世界の低照度画像に対する実験は、最先端の手法よりもUTVNetの優れた性能を明らかに示している。
論文 参考訳(メタデータ) (2021-10-03T11:22:17Z) - Learning Model-Blind Temporal Denoisers without Ground Truths [46.778450578529814]
合成データで訓練されたデノイザーは、未知のノイズの多様性に対処できないことが多い。
従来の画像ベース手法は、ビデオデノイザに直接適用した場合、ノイズが過度に収まる。
本稿では,これらの課題に対処する上で有効な,ビデオ・デノベーション・ネットワークの汎用フレームワークを提案する。
論文 参考訳(メタデータ) (2020-07-07T07:19:48Z) - Deep Bilateral Retinex for Low-Light Image Enhancement [96.15991198417552]
低照度画像は、低コントラスト、色歪み、測定ノイズによる視界の低下に悩まされる。
本稿では,低照度画像強調のための深層学習手法を提案する。
提案手法は最先端の手法と非常に競合し, 極めて低照度で撮影した画像の処理において, 他に比べて大きな優位性を有する。
論文 参考訳(メタデータ) (2020-07-04T06:26:44Z) - Unsupervised Low-light Image Enhancement with Decoupled Networks [103.74355338972123]
我々は、実世界の低照度画像を教師なしで拡張する2段階のGANベースのフレームワークを学習する。
提案手法は,照度向上と雑音低減の両面から,最先端の教師なし画像強調法より優れる。
論文 参考訳(メタデータ) (2020-05-06T13:37:08Z) - Variational Denoising Network: Toward Blind Noise Modeling and Removal [59.36166491196973]
ブラインド画像のデノイングはコンピュータビジョンにおいて重要な問題であるが、非常に難しい問題である。
本稿では,ノイズ推定と画像デノーミングを併用した新しい変分推論手法を提案する。
論文 参考訳(メタデータ) (2019-08-29T15:54:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。