State Representation Learning Using an Unbalanced Atlas
- URL: http://arxiv.org/abs/2305.10267v3
- Date: Mon, 24 Jun 2024 15:19:44 GMT
- Title: State Representation Learning Using an Unbalanced Atlas
- Authors: Li Meng, Morten Goodwin, Anis Yazidi, Paal Engelstad,
- Abstract summary: This paper introduces a novel learning paradigm using an unbalanced atlas (UA), capable of surpassing state-of-the-art self-supervised learning approaches.
The efficacy of DIM-UA is demonstrated through training and evaluation on the Atari Annotated RAM Interface benchmark.
- Score: 8.938418994111716
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The manifold hypothesis posits that high-dimensional data often lies on a lower-dimensional manifold and that utilizing this manifold as the target space yields more efficient representations. While numerous traditional manifold-based techniques exist for dimensionality reduction, their application in self-supervised learning has witnessed slow progress. The recent MSimCLR method combines manifold encoding with SimCLR but requires extremely low target encoding dimensions to outperform SimCLR, limiting its applicability. This paper introduces a novel learning paradigm using an unbalanced atlas (UA), capable of surpassing state-of-the-art self-supervised learning approaches. We investigated and engineered the DeepInfomax with an unbalanced atlas (DIM-UA) method by adapting the Spatiotemporal DeepInfomax (ST-DIM) framework to align with our proposed UA paradigm. The efficacy of DIM-UA is demonstrated through training and evaluation on the Atari Annotated RAM Interface (AtariARI) benchmark, a modified version of the Atari 2600 framework that produces annotated image samples for representation learning. The UA paradigm improves existing algorithms significantly as the number of target encoding dimensions grows. For instance, the mean F1 score averaged over categories of DIM-UA is ~75% compared to ~70% of ST-DIM when using 16384 hidden units.
Related papers
- LESA: Learnable LLM Layer Scaling-Up [57.0510934286449]
Training Large Language Models (LLMs) from scratch requires immense computational resources, making it prohibitively expensive.
Model scaling-up offers a promising solution by leveraging the parameters of smaller models to create larger ones.
We propose textbfLESA, a novel learnable method for depth scaling-up.
arXiv Detail & Related papers (2025-02-19T14:58:48Z) - DSMoE: Matrix-Partitioned Experts with Dynamic Routing for Computation-Efficient Dense LLMs [70.91804882618243]
This paper proposes DSMoE, a novel approach that achieves sparsification by partitioning pre-trained FFN layers into computational blocks.
We implement adaptive expert routing using sigmoid activation and straight-through estimators, enabling tokens to flexibly access different aspects of model knowledge.
Experiments on LLaMA models demonstrate that under equivalent computational constraints, DSMoE achieves superior performance compared to existing pruning and MoE approaches.
arXiv Detail & Related papers (2025-02-18T02:37:26Z) - USDRL: Unified Skeleton-Based Dense Representation Learning with Multi-Grained Feature Decorrelation [24.90512145836643]
We introduce a Unified Skeleton-based Dense Representation Learning framework based on feature decorrelation.
We show that our approach significantly outperforms the current state-of-the-art (SOTA) approaches.
arXiv Detail & Related papers (2024-12-12T12:20:27Z) - Language Models as Zero-shot Lossless Gradient Compressors: Towards General Neural Parameter Prior Models [56.00251589760559]
Large language models (LLMs) can act as gradient priors in a zero-shot setting.
We introduce LM-GC, a novel method that integrates LLMs with arithmetic coding.
Experiments indicate that LM-GC surpasses existing state-of-the-art lossless compression methods.
arXiv Detail & Related papers (2024-09-26T13:38:33Z) - Maximum Manifold Capacity Representations in State Representation Learning [8.938418994111716]
manifold-based self-supervised learning (SSL) builds on the manifold hypothesis.
DeepInfomax with an unbalanced atlas (DIM-UA) has emerged as a powerful tool.
MMCR presents a new frontier for SSL by optimizing class separability via manifold compression.
We present an innovative integration of MMCR into existing SSL methods, incorporating a discerning regularization strategy.
arXiv Detail & Related papers (2024-05-22T17:19:30Z) - Learning Feature Inversion for Multi-class Anomaly Detection under General-purpose COCO-AD Benchmark [101.23684938489413]
Anomaly detection (AD) is often focused on detecting anomalies for industrial quality inspection and medical lesion examination.
This work first constructs a large-scale and general-purpose COCO-AD dataset by extending COCO to the AD field.
Inspired by the metrics in the segmentation field, we propose several more practical threshold-dependent AD-specific metrics.
arXiv Detail & Related papers (2024-04-16T17:38:26Z) - MoE-LLaVA: Mixture of Experts for Large Vision-Language Models [49.32669226551026]
We propose a simple yet effective training strategy MoE-Tuning for LVLMs.
MoE-LLaVA, a MoE-based sparse LVLM architecture, uniquely activates only the top-k experts through routers.
Experiments show the significant performance of MoE-LLaVA in a variety of visual understanding and object hallucination benchmarks.
arXiv Detail & Related papers (2024-01-29T08:13:40Z) - Provable Multi-instance Deep AUC Maximization with Stochastic Pooling [39.46116380220933]
This paper considers a novel application of deep AUC (DAM) for multi-instance learning (MIL)
A single class label is assigned to a bag of instances (e.g., multiple 2D slices of a scan for a patient)
arXiv Detail & Related papers (2023-05-14T01:29:56Z) - Adaptive Hierarchical Similarity Metric Learning with Noisy Labels [138.41576366096137]
We propose an Adaptive Hierarchical Similarity Metric Learning method.
It considers two noise-insensitive information, textiti.e., class-wise divergence and sample-wise consistency.
Our method achieves state-of-the-art performance compared with current deep metric learning approaches.
arXiv Detail & Related papers (2021-10-29T02:12:18Z) - Atlas Based Representation and Metric Learning on Manifolds [0.0]
We explore the use of a topological manifold, represented as a collection of charts, as the target space of neural network based representation learning tasks.
This is achieved by a simple adjustment to the output of an encoder's network architecture plus the addition of a maximal mean discrepancy (MMD) based loss function for regularization.
arXiv Detail & Related papers (2021-06-13T18:05:46Z) - Revisiting Training Strategies and Generalization Performance in Deep
Metric Learning [28.54755295856929]
We revisit the most widely used DML objective functions and conduct a study of the crucial parameter choices.
Under consistent comparison, DML objectives show much higher saturation than indicated by literature.
Exploiting these insights, we propose a simple, yet effective, training regularization to reliably boost the performance of ranking-based DML models.
arXiv Detail & Related papers (2020-02-19T22:16:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.