Learning Feature Inversion for Multi-class Anomaly Detection under General-purpose COCO-AD Benchmark
- URL: http://arxiv.org/abs/2404.10760v1
- Date: Tue, 16 Apr 2024 17:38:26 GMT
- Title: Learning Feature Inversion for Multi-class Anomaly Detection under General-purpose COCO-AD Benchmark
- Authors: Jiangning Zhang, Chengjie Wang, Xiangtai Li, Guanzhong Tian, Zhucun Xue, Yong Liu, Guansong Pang, Dacheng Tao,
- Abstract summary: Anomaly detection (AD) is often focused on detecting anomalies for industrial quality inspection and medical lesion examination.
This work first constructs a large-scale and general-purpose COCO-AD dataset by extending COCO to the AD field.
Inspired by the metrics in the segmentation field, we propose several more practical threshold-dependent AD-specific metrics.
- Score: 101.23684938489413
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Anomaly detection (AD) is often focused on detecting anomaly areas for industrial quality inspection and medical lesion examination. However, due to the specific scenario targets, the data scale for AD is relatively small, and evaluation metrics are still deficient compared to classic vision tasks, such as object detection and semantic segmentation. To fill these gaps, this work first constructs a large-scale and general-purpose COCO-AD dataset by extending COCO to the AD field. This enables fair evaluation and sustainable development for different methods on this challenging benchmark. Moreover, current metrics such as AU-ROC have nearly reached saturation on simple datasets, which prevents a comprehensive evaluation of different methods. Inspired by the metrics in the segmentation field, we further propose several more practical threshold-dependent AD-specific metrics, ie, m$F_1$$^{.2}_{.8}$, mAcc$^{.2}_{.8}$, mIoU$^{.2}_{.8}$, and mIoU-max. Motivated by GAN inversion's high-quality reconstruction capability, we propose a simple but more powerful InvAD framework to achieve high-quality feature reconstruction. Our method improves the effectiveness of reconstruction-based methods on popular MVTec AD, VisA, and our newly proposed COCO-AD datasets under a multi-class unsupervised setting, where only a single detection model is trained to detect anomalies from different classes. Extensive ablation experiments have demonstrated the effectiveness of each component of our InvAD. Full codes and models are available at https://github.com/zhangzjn/ader.
Related papers
- Weakly supervised deep learning model with size constraint for prostate cancer detection in multiparametric MRI and generalization to unseen domains [0.90668179713299]
We show that the model achieves on-par performance with strong fully supervised baseline models.
We also observe a performance decrease for both fully supervised and weakly supervised models when tested on unseen data domains.
arXiv Detail & Related papers (2024-11-04T12:24:33Z) - A Comprehensive Library for Benchmarking Multi-class Visual Anomaly Detection [52.228708947607636]
This paper introduces a comprehensive visual anomaly detection benchmark, ADer, which is a modular framework for new methods.
The benchmark includes multiple datasets from industrial and medical domains, implementing fifteen state-of-the-art methods and nine comprehensive metrics.
We objectively reveal the strengths and weaknesses of different methods and provide insights into the challenges and future directions of multi-class visual anomaly detection.
arXiv Detail & Related papers (2024-06-05T13:40:07Z) - Test Time Training for Industrial Anomaly Segmentation [15.973768095014906]
Anomaly Detection and Ranging (AD&S) is crucial for industrial quality control.
This paper proposes a test time training strategy to improve the segmentation performance.
We demonstrate the effectiveness of our approach over baselines through extensive experimentation and evaluation on MVTec AD and MVTec 3D-AD.
arXiv Detail & Related papers (2024-04-04T18:31:24Z) - Small Object Detection via Coarse-to-fine Proposal Generation and
Imitation Learning [52.06176253457522]
We propose a two-stage framework tailored for small object detection based on the Coarse-to-fine pipeline and Feature Imitation learning.
CFINet achieves state-of-the-art performance on the large-scale small object detection benchmarks, SODA-D and SODA-A.
arXiv Detail & Related papers (2023-08-18T13:13:09Z) - Data-Efficient and Interpretable Tabular Anomaly Detection [54.15249463477813]
We propose a novel framework that adapts a white-box model class, Generalized Additive Models, to detect anomalies.
In addition, the proposed framework, DIAD, can incorporate a small amount of labeled data to further boost anomaly detection performances in semi-supervised settings.
arXiv Detail & Related papers (2022-03-03T22:02:56Z) - Enhancing the Generalization for Intent Classification and Out-of-Domain
Detection in SLU [70.44344060176952]
Intent classification is a major task in spoken language understanding (SLU)
Recent works have shown that using extra data and labels can improve the OOD detection performance.
This paper proposes to train a model with only IND data while supporting both IND intent classification and OOD detection.
arXiv Detail & Related papers (2021-06-28T08:27:38Z) - One-Shot Object Detection without Fine-Tuning [62.39210447209698]
We introduce a two-stage model consisting of a first stage Matching-FCOS network and a second stage Structure-Aware Relation Module.
We also propose novel training strategies that effectively improve detection performance.
Our method exceeds the state-of-the-art one-shot performance consistently on multiple datasets.
arXiv Detail & Related papers (2020-05-08T01:59:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.