論文の概要: Binarized Spectral Compressive Imaging
- arxiv url: http://arxiv.org/abs/2305.10299v3
- Date: Wed, 18 Oct 2023 13:13:25 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-19 13:08:40.985020
- Title: Binarized Spectral Compressive Imaging
- Title(参考訳): バイナリ化スペクトル圧縮イメージング
- Authors: Yuanhao Cai, Yuxin Zheng, Jing Lin, Xin Yuan, Yulun Zhang, Haoqian
Wang
- Abstract要約: ハイパースペクトル画像(HSI)再構成のための既存のディープラーニングモデルは、優れた性能を実現するが、膨大なメモリと計算資源を持つ強力なハードウェアを必要とする。
本稿では,BiSRNet(Biarized Spectral-Redistribution Network)を提案する。
BiSRNetは,提案手法を用いてベースモデルのバイナライズを行う。
- 参考スコア(独自算出の注目度): 59.18636040850608
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Existing deep learning models for hyperspectral image (HSI) reconstruction
achieve good performance but require powerful hardwares with enormous memory
and computational resources. Consequently, these methods can hardly be deployed
on resource-limited mobile devices. In this paper, we propose a novel method,
Binarized Spectral-Redistribution Network (BiSRNet), for efficient and
practical HSI restoration from compressed measurement in snapshot compressive
imaging (SCI) systems. Firstly, we redesign a compact and easy-to-deploy base
model to be binarized. Then we present the basic unit, Binarized
Spectral-Redistribution Convolution (BiSR-Conv). BiSR-Conv can adaptively
redistribute the HSI representations before binarizing activation and uses a
scalable hyperbolic tangent function to closer approximate the Sign function in
backpropagation. Based on our BiSR-Conv, we customize four binarized
convolutional modules to address the dimension mismatch and propagate
full-precision information throughout the whole network. Finally, our BiSRNet
is derived by using the proposed techniques to binarize the base model.
Comprehensive quantitative and qualitative experiments manifest that our
proposed BiSRNet outperforms state-of-the-art binarization methods and achieves
comparable performance with full-precision algorithms. Code and models are
publicly available at https://github.com/caiyuanhao1998/BiSCI and
https://github.com/caiyuanhao1998/MST
- Abstract(参考訳): ハイパースペクトル画像(hsi)再構成のための既存のディープラーニングモデルは優れた性能を実現するが、膨大なメモリと計算資源を持つ強力なハードウェアを必要とする。
したがって、これらの方法はリソース制限のあるモバイルデバイスにはほとんどデプロイできない。
本稿では, 圧縮圧縮画像(SCI)システムにおいて, 圧縮計測からHSIを効率よく, 実用的に復元する新しい手法であるBiSRNetを提案する。
まず、小型で展開が容易なベースモデルを再設計し、バイナライズする。
次に、基本単位、二元化スペクトル再分配畳み込み(bisr-conv)を示す。
BiSR-Conv はバイナライズアクティベーション前に HSI 表現を適応的に再分割し、拡張性のある双曲型タンジェント関数を用いてバックプロパゲーションにおいて符号関数を近似する。
BiSR-Convに基づいて、4つの二項化畳み込みモジュールをカスタマイズし、次元ミスマッチに対処し、ネットワーク全体の全精度情報を伝達する。
最後に、bisrnet はベースモデルを二元化するために提案手法を用いて導出する。
包括的定量的および定性的な実験により,提案したBiSRNetは最先端のバイナライゼーション手法より優れ,完全精度のアルゴリズムで同等の性能を発揮することが示された。
コードとモデルはhttps://github.com/caiyuanhao1998/BiSCIとhttps://github.com/caiyuanhao1998/MSTで公開されている。
関連論文リスト
- Binarized Diffusion Model for Image Super-Resolution [61.963833405167875]
超圧縮アルゴリズムであるバイナリ化は、高度な拡散モデル(DM)を効果的に加速する可能性を提供する
既存の二項化法では性能が著しく低下する。
画像SRのための新しいバイナライズ拡散モデルBI-DiffSRを提案する。
論文 参考訳(メタデータ) (2024-06-09T10:30:25Z) - MsDC-DEQ-Net: Deep Equilibrium Model (DEQ) with Multi-scale Dilated
Convolution for Image Compressive Sensing (CS) [0.0]
圧縮センシング(CS)は、従来のサンプリング法よりも少ない測定値を用いてスパース信号の回復を可能にする技術である。
我々はCSを用いた自然画像再構成のための解釈可能かつ簡潔なニューラルネットワークモデルを構築した。
MsDC-DEQ-Netと呼ばれるこのモデルは、最先端のネットワークベースの手法と比較して、競争力のある性能を示す。
論文 参考訳(メタデータ) (2024-01-05T16:25:58Z) - Input Layer Binarization with Bit-Plane Encoding [4.872439392746007]
本稿では,入力データの8ビット表現を直接利用して,第1層をバイナライズする手法を提案する。
得られたモデルは完全にバイナライズされ、第1層バイナライズアプローチはモデル独立です。
論文 参考訳(メタデータ) (2023-05-04T14:49:07Z) - BiFSMNv2: Pushing Binary Neural Networks for Keyword Spotting to
Real-Network Performance [54.214426436283134]
Deep-FSMNのようなディープニューラルネットワークはキーワードスポッティング(KWS)アプリケーションのために広く研究されている。
我々は、KWS、すなわちBiFSMNv2のための強力で効率的なバイナリニューラルネットワークを提示し、それを実ネットワーク精度のパフォーマンスにプッシュする。
小型アーキテクチャと最適化されたハードウェアカーネルの利点により、BiFSMNv2は25.1倍のスピードアップと20.2倍のストレージ節約を実現できる。
論文 参考訳(メタデータ) (2022-11-13T18:31:45Z) - Effective Invertible Arbitrary Image Rescaling [77.46732646918936]
Invertible Neural Networks (INN)は、ダウンスケーリングとアップスケーリングのサイクルを共同で最適化することにより、アップスケーリングの精度を大幅に向上させることができる。
本研究の1つのモデルのみをトレーニングすることにより、任意の画像再スケーリングを実現するために、単純で効果的な非可逆的再スケーリングネットワーク(IARN)を提案する。
LR出力の知覚品質を損なうことなく、双方向任意再スケーリングにおいて最先端(SOTA)性能を実現する。
論文 参考訳(メタデータ) (2022-09-26T22:22:30Z) - AdaBin: Improving Binary Neural Networks with Adaptive Binary Sets [27.022212653067367]
本稿では,重みとアクティベーションを共に1ビット値に分割したBNN(Binary Neural Networks)について検討する。
最適二元集合を適応的に得るために、AdaBin と呼ばれる単純で効果的なアプローチを提案する。
ベンチマークモデルとデータセットの実験結果は、提案されたAdaBinが最先端のパフォーマンスを達成可能であることを示している。
論文 参考訳(メタデータ) (2022-08-17T05:43:33Z) - Content-aware Scalable Deep Compressed Sensing [8.865549833627794]
本稿では、画像圧縮センシング問題に対処するため、CASNetと呼ばれる新しいコンテンツ対応スケーラブルネットワークを提案する。
まず,各画像領域の重要度を評価するためにデータ駆動型サリエンシ検出器を採用し,サンプリングレートアロケーションのためのサリエンシベースのブロック比アグリゲーション(BRA)戦略を提案する。
トレーニングの収束を加速し、ネットワークの堅牢性を向上させるために、SVDベースのスキームとランダム変換強化(RTE)戦略を提案する。
論文 参考訳(メタデータ) (2022-07-19T14:59:14Z) - Spectral Compressive Imaging Reconstruction Using Convolution and
Contextual Transformer [6.929652454131988]
本稿では,CCoT(Contextual Transformer)ブロックというハイブリッドネットワークモジュールを提案する。
提案したCCoTブロックを,一般化された交互投影アルゴリズムに基づく深層展開フレームワークに統合し,さらにGAP-CTネットワークを提案する。
論文 参考訳(メタデータ) (2022-01-15T06:30:03Z) - A New Backbone for Hyperspectral Image Reconstruction [90.48427561874402]
3次元ハイパースペクトル画像(HSI)再構成は、スナップショット圧縮画像の逆過程を指す。
空間/スペクトル不変Residual U-Net、すなわちSSI-ResU-Netを提案する。
SSI-ResU-Net は浮動小数点演算の 77.3% 以上で競合する性能を実現する。
論文 参考訳(メタデータ) (2021-08-17T16:20:51Z) - Accurate and Lightweight Image Super-Resolution with Model-Guided Deep
Unfolding Network [63.69237156340457]
我々は、モデル誘導深部展開ネットワーク(MoG-DUN)と呼ばれるSISRに対する説明可能なアプローチを提示し、提唱する。
MoG-DUNは正確(エイリアスを少なくする)、計算効率(モデルパラメータを減らした)、多用途(多重劣化を処理できる)である。
RCAN, SRDNF, SRFBNを含む既存の最先端画像手法に対するMoG-DUN手法の優位性は、いくつかの一般的なデータセットと様々な劣化シナリオに関する広範な実験によって実証されている。
論文 参考訳(メタデータ) (2020-09-14T08:23:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。