Rethinking the Open-Loop Evaluation of End-to-End Autonomous Driving in
nuScenes
- URL: http://arxiv.org/abs/2305.10430v2
- Date: Sun, 22 Oct 2023 02:45:33 GMT
- Title: Rethinking the Open-Loop Evaluation of End-to-End Autonomous Driving in
nuScenes
- Authors: Jiang-Tian Zhai, Ze Feng, Jinhao Du, Yongqiang Mao, Jiang-Jiang Liu,
Zichang Tan, Yifu Zhang, Xiaoqing Ye, Jingdong Wang
- Abstract summary: Planning task involves predicting the trajectory of the ego vehicle based on inputs from both internal intention and the external environment.
Most existing works evaluate their performance on the nuScenes dataset using the L2 error and collision rate between the predicted trajectories and the ground truth.
In this paper, we reevaluate these existing evaluation metrics and explore whether they accurately measure the superiority of different methods.
Our simple method achieves similar end-to-end planning performance on the nuScenes dataset with other perception-based methods, reducing the average L2 error by about 20%.
- Score: 38.43491956142818
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Modern autonomous driving systems are typically divided into three main
tasks: perception, prediction, and planning. The planning task involves
predicting the trajectory of the ego vehicle based on inputs from both internal
intention and the external environment, and manipulating the vehicle
accordingly. Most existing works evaluate their performance on the nuScenes
dataset using the L2 error and collision rate between the predicted
trajectories and the ground truth. In this paper, we reevaluate these existing
evaluation metrics and explore whether they accurately measure the superiority
of different methods. Specifically, we design an MLP-based method that takes
raw sensor data (e.g., past trajectory, velocity, etc.) as input and directly
outputs the future trajectory of the ego vehicle, without using any perception
or prediction information such as camera images or LiDAR. Our simple method
achieves similar end-to-end planning performance on the nuScenes dataset with
other perception-based methods, reducing the average L2 error by about 20%.
Meanwhile, the perception-based methods have an advantage in terms of collision
rate. We further conduct in-depth analysis and provide new insights into the
factors that are critical for the success of the planning task on nuScenes
dataset. Our observation also indicates that we need to rethink the current
open-loop evaluation scheme of end-to-end autonomous driving in nuScenes. Codes
are available at https://github.com/E2E-AD/AD-MLP.
Related papers
- Building Real-time Awareness of Out-of-distribution in Trajectory Prediction for Autonomous Vehicles [8.398221841050349]
Trajectory prediction describes the motions of surrounding moving obstacles for an autonomous vehicle.
In this paper, we aim to establish real-time awareness of out-of-distribution in trajectory prediction for autonomous vehicles.
Our solutions are lightweight and can handle the occurrence of out-of-distribution at any time during trajectory prediction inference.
arXiv Detail & Related papers (2024-09-25T18:43:58Z) - Pioneering SE(2)-Equivariant Trajectory Planning for Automated Driving [45.18582668677648]
Planning the trajectory of the controlled ego vehicle is a key challenge in automated driving.
We propose a lightweight equivariant planning model that generates multi-modal joint predictions for all vehicles.
We also propose equivariant route attraction to guide the ego vehicle along a high-level route provided by an off-the-shelf GPS navigation system.
arXiv Detail & Related papers (2024-03-17T18:53:46Z) - Is Ego Status All You Need for Open-Loop End-to-End Autonomous Driving? [84.17711168595311]
End-to-end autonomous driving has emerged as a promising research direction to target autonomy from a full-stack perspective.
nuScenes dataset, characterized by relatively simple driving scenarios, leads to an under-utilization of perception information in end-to-end models.
We introduce a new metric to evaluate whether the predicted trajectories adhere to the road.
arXiv Detail & Related papers (2023-12-05T11:32:31Z) - Pre-training on Synthetic Driving Data for Trajectory Prediction [61.520225216107306]
We propose a pipeline-level solution to mitigate the issue of data scarcity in trajectory forecasting.
We adopt HD map augmentation and trajectory synthesis for generating driving data, and then we learn representations by pre-training on them.
We conduct extensive experiments to demonstrate the effectiveness of our data expansion and pre-training strategies.
arXiv Detail & Related papers (2023-09-18T19:49:22Z) - Implicit Occupancy Flow Fields for Perception and Prediction in
Self-Driving [68.95178518732965]
A self-driving vehicle (SDV) must be able to perceive its surroundings and predict the future behavior of other traffic participants.
Existing works either perform object detection followed by trajectory of the detected objects, or predict dense occupancy and flow grids for the whole scene.
This motivates our unified approach to perception and future prediction that implicitly represents occupancy and flow over time with a single neural network.
arXiv Detail & Related papers (2023-08-02T23:39:24Z) - Control-Aware Prediction Objectives for Autonomous Driving [78.19515972466063]
We present control-aware prediction objectives (CAPOs) to evaluate the downstream effect of predictions on control without requiring the planner be differentiable.
We propose two types of importance weights that weight the predictive likelihood: one using an attention model between agents, and another based on control variation when exchanging predicted trajectories for ground truth trajectories.
arXiv Detail & Related papers (2022-04-28T07:37:21Z) - Injecting Knowledge in Data-driven Vehicle Trajectory Predictors [82.91398970736391]
Vehicle trajectory prediction tasks have been commonly tackled from two perspectives: knowledge-driven or data-driven.
In this paper, we propose to learn a "Realistic Residual Block" (RRB) which effectively connects these two perspectives.
Our proposed method outputs realistic predictions by confining the residual range and taking into account its uncertainty.
arXiv Detail & Related papers (2021-03-08T16:03:09Z) - STINet: Spatio-Temporal-Interactive Network for Pedestrian Detection and
Trajectory Prediction [24.855059537779294]
We present a novel end-to-end two-stage network: Spatio--Interactive Network (STINet)
In addition to 3D geometry of pedestrians, we model temporal information for each of the pedestrians.
Our method predicts both current and past locations in the first stage, so that each pedestrian can be linked across frames.
arXiv Detail & Related papers (2020-05-08T18:43:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.