論文の概要: Bring More Attention to Syntactic Symmetry for Automatic Postediting of
High-Quality Machine Translations
- arxiv url: http://arxiv.org/abs/2305.10557v2
- Date: Sat, 17 Jun 2023 09:58:02 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-22 02:11:50.286906
- Title: Bring More Attention to Syntactic Symmetry for Automatic Postediting of
High-Quality Machine Translations
- Title(参考訳): 高品質機械翻訳の自動投稿のための構文対称性に注意を向ける
- Authors: Baikjin Jung, Myungji Lee, Jong-Hyeok Lee, Yunsu Kim
- Abstract要約: 本稿では, APE モデルが対象言語に対する理解を深めることが期待される正規化の言語動機付け手法を提案する。
実験結果から,提案手法は高品位MTにおける最先端アーキテクチャの APE 品質向上に有効であることが示された。
- 参考スコア(独自算出の注目度): 4.217162744375792
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Automatic postediting (APE) is an automated process to refine a given machine
translation (MT). Recent findings present that existing APE systems are not
good at handling high-quality MTs even for a language pair with abundant data
resources, English-to-German: the better the given MT is, the harder it is to
decide what parts to edit and how to fix these errors. One possible solution to
this problem is to instill deeper knowledge about the target language into the
model. Thus, we propose a linguistically motivated method of regularization
that is expected to enhance APE models' understanding of the target language: a
loss function that encourages symmetric self-attention on the given MT. Our
analysis of experimental results demonstrates that the proposed method helps
improving the state-of-the-art architecture's APE quality for high-quality MTs.
- Abstract(参考訳): 自動ポストティング(英: Automatic Postiting、APE)は、機械翻訳(MT)を改良する自動化プロセスである。
近年,既存の APE システムは,豊富なデータ資源を持つ言語ペアに対してさえ,高品質な MT を扱うのが得意でないことが示唆されている。
この問題の解決策の1つは、対象言語に関する深い知識をモデルに浸透させることである。
そこで本研究では,目的言語に対するapモデルの理解を深める言語的動機付けによる正規化手法を提案する。本手法はmt上で対称な自己着脱を促す損失関数であり,本手法がmtsにおけるap品質の向上に寄与することを示す。
関連論文リスト
- Guiding Large Language Models to Post-Edit Machine Translation with Error Annotations [14.149224539732913]
機械翻訳は、大規模言語モデル(LLM)がまだ専用の教師付きシステムに取って代わっていない最後のNLPタスクの1つである。
この研究はLLMの補完的な強度を利用して、その品質に外部からのフィードバックを伴って、LMを自動で後続MTに誘導する。
中国語・英語・ドイツ語・英語・ロシア語のMQMデータを用いた実験により,LLMのMT後処理によりTER,BLEU,COMETのスコアが向上することが実証された。
微調整はきめ細かいフィードバックをより効果的に統合し、自動評価と人的評価の両方に基づいて翻訳品質を向上させる。
論文 参考訳(メタデータ) (2024-04-11T15:47:10Z) - Simultaneous Machine Translation with Large Language Models [51.470478122113356]
我々は,SimulMTタスクに大規模言語モデルを適用する可能性を検討する。
MUST-Cデータセットと異なる9言語でtextttLlama2-7b-chatモデルを用いて実験を行った。
その結果,LLM は BLEU と LAAL の指標で専用MT モデルよりも優れていた。
論文 参考訳(メタデータ) (2023-09-13T04:06:47Z) - The Devil is in the Errors: Leveraging Large Language Models for
Fine-grained Machine Translation Evaluation [93.01964988474755]
AutoMQMは,大規模な言語モデルに対して,翻訳におけるエラーの識別と分類を求めるプロンプト技術である。
テキスト内学習と微調整によるラベル付きデータの影響について検討する。
次に, PaLM-2モデルを用いてAutoMQMを評価し, スコアのプロンプトよりも性能が向上することがわかった。
論文 参考訳(メタデータ) (2023-08-14T17:17:21Z) - Revisiting Machine Translation for Cross-lingual Classification [91.43729067874503]
この分野のほとんどの研究は、機械翻訳コンポーネントではなく多言語モデルに焦点を当てている。
より強力なMTシステムを用いて、原文のトレーニングと機械翻訳テキストの推論のミスマッチを緩和することにより、翻訳テストは以前想定していたよりも大幅に優れていることを示す。
論文 参考訳(メタデータ) (2023-05-23T16:56:10Z) - Perturbation-based QE: An Explainable, Unsupervised Word-level Quality
Estimation Method for Blackbox Machine Translation [12.376309678270275]
摂動に基づくQEは、単に摂動入力元文上で出力されるMTシステムを分析することで機能する。
我々のアプローチは、教師付きQEよりも、翻訳における性別バイアスや単語センスの曖昧さの誤りを検出するのに優れている。
論文 参考訳(メタデータ) (2023-05-12T13:10:57Z) - Evaluating and Improving the Coreference Capabilities of Machine
Translation Models [30.60934078720647]
機械翻訳は幅広い言語能力を必要とする。
現在のエンドツーエンドモデルは、バイリンガルコーパスで一致した文を観察することで暗黙的に学習することが期待されている。
論文 参考訳(メタデータ) (2023-02-16T18:16:09Z) - An Empirical Study of Automatic Post-Editing [56.86393786396992]
APEは、機械翻訳出力のエラーを自動的に修正することで、手作業による後処理の労力を削減することを目的としている。
真のトレーニングデータの不足を軽減するため、現在のAPEシステムの多くは、大規模な人工コーパスを生成するためにデータ拡張手法を採用している。
本研究では,既存のAPEシステムにおける問題点を解析するために,難解なAPEデータセット上での最先端のAPEモデルの出力について検討する。
論文 参考訳(メタデータ) (2022-09-16T07:38:27Z) - When Does Translation Require Context? A Data-driven, Multilingual
Exploration [71.43817945875433]
談話の適切な処理は機械翻訳(MT)の品質に大きく貢献する
文脈認識型MTにおける最近の研究は、評価中に少量の談話現象を標的にしようとしている。
談話現象のモデル性能を識別・評価するタグの集合である,多言語談話認識ベンチマークを開発した。
論文 参考訳(メタデータ) (2021-09-15T17:29:30Z) - Unsupervised Quality Estimation for Neural Machine Translation [63.38918378182266]
既存のアプローチでは、大量の専門家アノテートデータ、計算、トレーニング時間が必要です。
MTシステム自体以外に、トレーニングや追加リソースへのアクセスが不要なQEに対して、教師なしのアプローチを考案する。
我々は品質の人間の判断と非常によく相関し、最先端の教師付きQEモデルと競合する。
論文 参考訳(メタデータ) (2020-05-21T12:38:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。