論文の概要: MetaGAD: Meta Representation Adaptation for Few-Shot Graph Anomaly Detection
- arxiv url: http://arxiv.org/abs/2305.10668v2
- Date: Fri, 23 Aug 2024 19:31:31 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-28 01:17:09.314823
- Title: MetaGAD: Meta Representation Adaptation for Few-Shot Graph Anomaly Detection
- Title(参考訳): MetaGAD:Few-Shot Graph 異常検出のためのメタ表現適応
- Authors: Xiongxiao Xu, Kaize Ding, Canyu Chen, Kai Shu,
- Abstract要約: 少数ショットグラフ異常検出の重要な問題について検討する。
本稿では,自己指導学習から少数ショット指導学習へ知識を適応させるメタGADを提案する。
具体的には、二段階最適化として問題を定式化し、MetaGADの収束を保証し、検証損失を最小限に抑える。
- 参考スコア(独自算出の注目度): 31.218962952724624
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Graph anomaly detection has long been an important problem in various domains pertaining to information security such as financial fraud, social spam and network intrusion. The majority of existing methods are performed in an unsupervised manner, as labeled anomalies in a large scale are often too expensive to acquire. However, the identified anomalies may turn out to be uninteresting data instances due to the lack of prior knowledge. In real-world scenarios, it is often feasible to obtain limited labeled anomalies, which have great potential to advance graph anomaly detection. However, the work exploring limited labeled anomalies and a large amount of unlabeled nodes in graphs to detect anomalies is relatively limited. Therefore, in this paper, we study an important problem of few-shot graph anomaly detection. Nonetheless, it is challenging to fully leverage the information of few-shot anomalous nodes due to the irregularity of anomalies and the overfitting issue in the few-shot learning. To tackle the above challenges, we propose a novel meta-learning based framework, MetaGAD, that learns to adapt the knowledge from self-supervised learning to few-shot supervised learning for graph anomaly detection. In specific, we formulate the problem as a bi-level optimization, ensuring MetaGAD converging to minimizing the validation loss, thus enhancing the generalization capacity. The comprehensive experiments on six real-world datasets with synthetic anomalies and "organic" anomalies (available in the datasets) demonstrate the effectiveness of MetaGAD in detecting anomalies with few-shot anomalies. The code is available at https://github.com/XiongxiaoXu/MetaGAD.
- Abstract(参考訳): グラフ異常検出は、金融詐欺、社会スパム、ネットワーク侵入などの情報セキュリティに関する諸分野において、長年にわたり重要な問題であった。
既存の手法のほとんどは教師なしの方法で実行されており、大規模にラベル付けされた異常は取得するには高すぎることが多い。
しかし、識別された異常は、事前の知識が欠如しているため、データインスタンスが興味をそそらないことが判明する。
実世界のシナリオでは、しばしば制限付きラベル付き異常を得ることが可能であり、グラフ異常の検出を前進させる大きな可能性を秘めている。
しかし, ラベル付き異常やグラフ内の未ラベルノードを多数探索して異常を検出する作業は, 比較的限られている。
そこで本研究では,少数ショットグラフ異常検出における重要な問題について検討する。
それでも、異常な異常や数ショット学習における過度な問題のために、数ショットの異常なノードの情報を完全に活用することは困難である。
このような課題に対処するために,自己教師付き学習からグラフ異常検出のための少数ショット教師付き学習への知識の適応を学習する,メタ学習ベースの新しいフレームワーク,MetaGADを提案する。
具体的には、二段階最適化として問題を定式化し、MetaGADの収束を保証し、検証損失を最小限に抑え、一般化能力を高める。
合成異常を伴う6つの実世界のデータセットと「有機」異常(データセットで利用できる)に関する包括的な実験は、メタGADが数発の異常を検知する効果を実証している。
コードはhttps://github.com/XiongxiaoXu/MetaGADで入手できる。
関連論文リスト
- UMGAD: Unsupervised Multiplex Graph Anomaly Detection [40.17829938834783]
UMGADと呼ばれる新しい教師なし多重グラフ異常検出法を提案する。
我々はまず、多重異種グラフにおけるノード間の多重相関関係を学習する。
そして、ノイズや冗長な情報が異常情報抽出に与える影響を弱めるために、属性レベルおよびサブグラフレベルの拡張ビューグラフを生成する。
論文 参考訳(メタデータ) (2024-11-19T15:15:45Z) - Multitask Active Learning for Graph Anomaly Detection [48.690169078479116]
MultItask acTIve Graph Anomaly Detection framework,すなわちMITIGATEを提案する。
ノード分類タスクを結合することにより、MITIGATEは既知の異常を伴わずに配布外ノードを検出する能力を得る。
4つのデータセットに関する実証的研究は、MITIGATEが異常検出のための最先端の手法を著しく上回っていることを示している。
論文 参考訳(メタデータ) (2024-01-24T03:43:45Z) - ADA-GAD: Anomaly-Denoised Autoencoders for Graph Anomaly Detection [84.0718034981805]
我々はAnomaly-Denoized Autoencoders for Graph Anomaly Detection (ADA-GAD)という新しいフレームワークを導入する。
第1段階では,異常レベルを低減したグラフを生成する学習自由な異常化拡張法を設計する。
次の段階では、デコーダは元のグラフで検出するために再訓練される。
論文 参考訳(メタデータ) (2023-12-22T09:02:01Z) - Few-shot Message-Enhanced Contrastive Learning for Graph Anomaly
Detection [15.757864894708364]
グラフ異常検出は、多数派から大きく逸脱するグラフデータの例外的なインスタンスを特定する上で重要な役割を果たす。
我々はFMGADと呼ばれる新しい数ショットグラフ異常検出モデルを提案する。
FMGADは, 人工的に注入された異常やドメイン・有機異常によらず, 他の最先端手法よりも優れた性能が得られることを示す。
論文 参考訳(メタデータ) (2023-11-17T07:49:20Z) - Towards Self-Interpretable Graph-Level Anomaly Detection [73.1152604947837]
グラフレベルの異常検出(GLAD)は、コレクションの大多数と比べて顕著な相違を示すグラフを識別することを目的としている。
本稿では,異常なグラフを検出し,同時に情報的説明を生成する自己解釈グラフaNomaly dETectionモデル(SIGNET)を提案する。
論文 参考訳(メタデータ) (2023-10-25T10:10:07Z) - Label-based Graph Augmentation with Metapath for Graph Anomaly Detection [8.090325400557697]
本稿では,2つのエンコーダとデコーダの両方にGCN層を組み込んだMetapath-based Graph Anomaly Detection (MGAD)を提案する。
本稿では,7つの実世界のネットワークを対象とした総合的な実験を通して,MGAD法が最先端技術よりも優れていることを示す。
論文 参考訳(メタデータ) (2023-08-21T05:41:05Z) - SAD: Semi-Supervised Anomaly Detection on Dynamic Graphs [11.819993729810257]
異常検出は、良性例の大多数と大きく異なる異常例を区別することを目的としている。
グラフニューラルネットワークは、異常検出問題に取り組むことで、ますます人気が高まっている。
動的グラフ上での異常検出のためのエンドツーエンドフレームワークである半教師付き異常検出(SAD)を提案する。
論文 参考訳(メタデータ) (2023-05-23T01:05:34Z) - DAGAD: Data Augmentation for Graph Anomaly Detection [57.92471847260541]
本稿では、属性グラフのための新しいデータ拡張ベースのグラフ異常検出(DAGAD)フレームワークを考案する。
3つのデータセットに関する一連の実験は、DAGADが様々な主に使用されるメトリクスに関して、10の最先端のベースライン検出器より優れていることを証明している。
論文 参考訳(メタデータ) (2022-10-18T11:28:21Z) - Deep Graph-level Anomaly Detection by Glocal Knowledge Distillation [61.39364567221311]
グラフレベルの異常検出(GAD)は、その構造やノードの特徴に異常なグラフを検出する問題を記述している。
GADの課題の1つは、局所的および大域的非正則グラフの検出を可能にするグラフ表現を考案することである。
本稿では,グラフとノード表現の連成ランダム蒸留により,グローバルおよびローカルな正規パターン情報を豊富に学習するGADのための新しい深部異常検出手法を提案する。
論文 参考訳(メタデータ) (2021-12-19T05:04:53Z) - Toward Deep Supervised Anomaly Detection: Reinforcement Learning from
Partially Labeled Anomaly Data [150.9270911031327]
本稿では,一部のラベル付き異常事例と大規模ラベルなしデータセットを用いた異常検出の問題点について考察する。
既存の関連手法は、通常、一連の異常にまたがらない限られた異常例にのみ適合するか、ラベルのないデータから教師なしの学習を進めるかのいずれかである。
そこで本研究では,ラベル付きおよびラベルなし両方の異常の検出をエンドツーエンドに最適化する,深層強化学習に基づくアプローチを提案する。
論文 参考訳(メタデータ) (2020-09-15T03:05:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。