Robust and efficient verification of graph states in blind
measurement-based quantum computation
- URL: http://arxiv.org/abs/2305.10742v2
- Date: Mon, 20 Nov 2023 02:50:22 GMT
- Title: Robust and efficient verification of graph states in blind
measurement-based quantum computation
- Authors: Zihao Li, Huangjun Zhu, Masahito Hayashi
- Abstract summary: Blind quantum computation (BQC) is a secure quantum computation method that protects the privacy of clients.
It is crucial to verify whether the resource graph states are accurately prepared in the adversarial scenario.
Here, we propose a robust and efficient protocol for verifying arbitrary graph states with any prime local dimension.
- Score: 52.70359447203418
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Blind quantum computation (BQC) is a secure quantum computation method that
protects the privacy of clients. Measurement-based quantum computation (MBQC)
is a promising approach for realizing BQC. To obtain reliable results in blind
MBQC, it is crucial to verify whether the resource graph states are accurately
prepared in the adversarial scenario. However, previous verification protocols
for this task are too resource consuming or noise susceptible to be applied in
practice. Here, we propose a robust and efficient protocol for verifying
arbitrary graph states with any prime local dimension in the adversarial
scenario, which leads to a robust and efficient protocol for verifying the
resource state in blind MBQC. Our protocol requires only local Pauli
measurements and is thus easy to realize with current technologies.
Nevertheless, it can achieve the optimal scaling behaviors with respect to the
system size and the target precision as quantified by the infidelity and
significance level, which has never been achieved before. Notably, our protocol
can exponentially enhance the scaling behavior with the significance level.
Related papers
- On-Chip Verified Quantum Computation with an Ion-Trap Quantum Processing Unit [0.5497663232622965]
We present and experimentally demonstrate a novel approach to verification and benchmarking of quantum computing.
Unlike previous information-theoretically secure verification protocols, our approach is implemented entirely on-chip.
Our results pave the way for more accessible and efficient verification and benchmarking strategies in near-term quantum devices.
arXiv Detail & Related papers (2024-10-31T16:54:41Z) - Towards Scalable Quantum Key Distribution: A Machine Learning-Based Cascade Protocol Approach [2.363573186878154]
Quantum Key Distribution (QKD) is a pivotal technology in the quest for secure communication.
Traditional key rate determination methods, dependent on complex mathematical models, often fall short in efficiency and scalability.
We propose an approach that involves integrating machine learning (ML) techniques with the Cascade error correction protocol.
arXiv Detail & Related papers (2024-09-12T13:40:08Z) - Verification of Quantum Computations without Trusted Preparations or Measurements [0.6249768559720122]
We present a modular, composable, and efficient way to turn known verification schemes into protocols that rely only on trusted gates.
Our first contribution is an extremely lightweight reduction of the problem of quantum verification for BQP to the trusted application of single-qubit rotations around the Z axis and bit flips.
The second construction shows that it is generally possible to information-theoretically verify arbitrary quantum computations with quantum output without trusted preparations or measurements.
arXiv Detail & Related papers (2024-03-15T16:54:28Z) - Deterministic Ans\"atze for the Measurement-based Variational Quantum
Eigensolver [0.0]
This study introduces MBVQE-ans"atze that respect determinism and resemble the widely used problem-agnostic hardware-efficient VQE ansatz.
We find that ensuring determinism works better via postselection than by adaptive measurements at the expense of increased sampling cost.
We propose an efficient MBQC-inspired method to prepare the resource state, specifically the cluster state, on hardware with heavy-hex connectivity.
arXiv Detail & Related papers (2023-12-20T18:08:25Z) - On-Chip Hardware-Aware Quantization for Mixed Precision Neural Networks [52.97107229149988]
We propose an On-Chip Hardware-Aware Quantization framework, performing hardware-aware mixed-precision quantization on deployed edge devices.
For efficiency metrics, we built an On-Chip Quantization Aware pipeline, which allows the quantization process to perceive the actual hardware efficiency of the quantization operator.
For accuracy metrics, we propose Mask-Guided Quantization Estimation technology to effectively estimate the accuracy impact of operators in the on-chip scenario.
arXiv Detail & Related papers (2023-09-05T04:39:34Z) - Single-photon-memory measurement-device-independent quantum secure
direct communication [63.75763893884079]
Quantum secure direct communication (QSDC) uses the quantum channel to transmit information reliably and securely.
In order to eliminate the security loopholes resulting from practical detectors, the measurement-device-independent (MDI) QSDC protocol has been proposed.
We propose a single-photon-memory MDI QSDC protocol (SPMQC) for dispensing with high-performance quantum memory.
arXiv Detail & Related papers (2022-12-12T02:23:57Z) - Potential and limitations of quantum extreme learning machines [55.41644538483948]
We present a framework to model QRCs and QELMs, showing that they can be concisely described via single effective measurements.
Our analysis paves the way to a more thorough understanding of the capabilities and limitations of both QELMs and QRCs.
arXiv Detail & Related papers (2022-10-03T09:32:28Z) - QSAN: A Near-term Achievable Quantum Self-Attention Network [73.15524926159702]
Self-Attention Mechanism (SAM) is good at capturing the internal connections of features.
A novel Quantum Self-Attention Network (QSAN) is proposed for image classification tasks on near-term quantum devices.
arXiv Detail & Related papers (2022-07-14T12:22:51Z) - Demonstration of Entanglement-Enhanced Covert Sensing [3.516093069612194]
We present the theory and experiment for entanglement-enhanced covert sensing.
We show that entanglement offers a performance boost in estimating the imparted phase by a probed object.
Our work is expected to create ample opportunities for quantum information processing at unprecedented security and performance levels.
arXiv Detail & Related papers (2022-05-25T16:20:34Z) - Data post-processing for the one-way heterodyne protocol under
composable finite-size security [62.997667081978825]
We study the performance of a practical continuous-variable (CV) quantum key distribution protocol.
We focus on the Gaussian-modulated coherent-state protocol with heterodyne detection in a high signal-to-noise ratio regime.
This allows us to study the performance for practical implementations of the protocol and optimize the parameters connected to the steps above.
arXiv Detail & Related papers (2022-05-20T12:37:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.