On-Chip Verified Quantum Computation with an Ion-Trap Quantum Processing Unit
- URL: http://arxiv.org/abs/2410.24133v1
- Date: Thu, 31 Oct 2024 16:54:41 GMT
- Title: On-Chip Verified Quantum Computation with an Ion-Trap Quantum Processing Unit
- Authors: Cica Gustiani, Dominik Leichtle, Daniel Mills, Jonathan Miller, Ross Grassie, Elham Kashefi,
- Abstract summary: We present and experimentally demonstrate a novel approach to verification and benchmarking of quantum computing.
Unlike previous information-theoretically secure verification protocols, our approach is implemented entirely on-chip.
Our results pave the way for more accessible and efficient verification and benchmarking strategies in near-term quantum devices.
- Score: 0.5497663232622965
- License:
- Abstract: We present and experimentally demonstrate a novel approach to verification and benchmarking of quantum computing, implementing it on an ion-trap quantum computer. Unlike previous information-theoretically secure verification protocols, which typically require quantum communication between client and server, our approach is implemented entirely on-chip. This eliminates the need for a quantum client and significantly enhances practicality. We perform tomography to justify the additionally required assumption that the noise is independent of the secret used to prepare the Server's single-qubit states. We quantify the soundness error which may be caused by residual secret dependencies. We demonstrate our protocol on the 20-qubit Quantinuum H1-1 ion-trap quantum processing unit, using qubit measurements and resets to construct measurement patterns with up to 52 vertices. To our knowledge, these are the largest verified measurement-based quantum computations performed to date. Our results pave the way for more accessible and efficient verification and benchmarking strategies in near-term quantum devices, enabling robust performance assessment without the added cost of external quantum infrastructure.
Related papers
- The curse of random quantum data [62.24825255497622]
We quantify the performances of quantum machine learning in the landscape of quantum data.
We find that the training efficiency and generalization capabilities in quantum machine learning will be exponentially suppressed with the increase in qubits.
Our findings apply to both the quantum kernel method and the large-width limit of quantum neural networks.
arXiv Detail & Related papers (2024-08-19T12:18:07Z) - Experimental verifiable multi-client blind quantum computing on a Qline architecture [0.5018974919510384]
We provide the first experimental implementation of a two-client verifiable blind quantum computing protocol in a distributed architecture.
Results represent novel perspectives for the verification of multi-tenant distributed quantum computation in large-scale networks.
arXiv Detail & Related papers (2024-07-12T14:48:58Z) - A Quantum-Classical Collaborative Training Architecture Based on Quantum
State Fidelity [50.387179833629254]
We introduce a collaborative classical-quantum architecture called co-TenQu.
Co-TenQu enhances a classical deep neural network by up to 41.72% in a fair setting.
It outperforms other quantum-based methods by up to 1.9 times and achieves similar accuracy while utilizing 70.59% fewer qubits.
arXiv Detail & Related papers (2024-02-23T14:09:41Z) - Verifiable measurement-based quantum random sampling with trapped ions [0.7978498178655667]
Quantum computers are now on the brink of outperforming their classical counterparts.
One way to demonstrate the advantage is through quantum random sampling performed on quantum computing devices.
Here, we experimentally demonstrate efficiently verifiable quantum random sampling in the measurement-based model of quantum computation.
arXiv Detail & Related papers (2023-07-26T18:00:03Z) - Oblivious Quantum Computation and Delegated Multiparty Quantum
Computation [61.12008553173672]
We propose a new concept, oblivious computation quantum computation, where secrecy of the input qubits and the program to identify the quantum gates are required.
Exploiting quantum teleportation, we propose a two-server protocol for this task.
Also, we discuss delegated multiparty quantum computation, in which, several users ask multiparty quantum computation to server(s) only using classical communications.
arXiv Detail & Related papers (2022-11-02T09:01:33Z) - Anticipative measurements in hybrid quantum-classical computation [68.8204255655161]
We present an approach where the quantum computation is supplemented by a classical result.
Taking advantage of its anticipation also leads to a new type of quantum measurements, which we call anticipative.
In an anticipative quantum measurement the combination of the results from classical and quantum computations happens only in the end.
arXiv Detail & Related papers (2022-09-12T15:47:44Z) - Suppressing decoherence in quantum state transfer with unitary
operations [1.9662978733004601]
We study an application of quantum state-dependent pre- and post-processing unitary operations for protecting the given (multi-qubit) quantum state.
We observe the increase in the fidelity of the output quantum state both in a quantum emulation experiment and in a real experiment with a cloud-accessible quantum processor.
arXiv Detail & Related papers (2022-08-09T17:41:20Z) - An Amplitude-Based Implementation of the Unit Step Function on a Quantum
Computer [0.0]
We introduce an amplitude-based implementation for approximating non-linearity in the form of the unit step function on a quantum computer.
We describe two distinct circuit types which receive their input either directly from a classical computer, or as a quantum state when embedded in a more advanced quantum algorithm.
arXiv Detail & Related papers (2022-06-07T07:14:12Z) - Benchmarking of Quantum Protocols [0.9176056742068812]
We consider several quantum protocols that enable promising functionalities and services in near-future quantum networks.
We use NetSquid simulation platform to evaluate the effect of various sources of noise on the performance of these protocols.
arXiv Detail & Related papers (2021-11-03T21:17:04Z) - On exploring the potential of quantum auto-encoder for learning quantum systems [60.909817434753315]
We devise three effective QAE-based learning protocols to address three classically computational hard learning problems.
Our work sheds new light on developing advanced quantum learning algorithms to accomplish hard quantum physics and quantum information processing tasks.
arXiv Detail & Related papers (2021-06-29T14:01:40Z) - Direct Quantum Communications in the Presence of Realistic Noisy
Entanglement [69.25543534545538]
We propose a novel quantum communication scheme relying on realistic noisy pre-shared entanglement.
Our performance analysis shows that the proposed scheme offers competitive QBER, yield, and goodput.
arXiv Detail & Related papers (2020-12-22T13:06:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.