論文の概要: Manifold-Aware Self-Training for Unsupervised Domain Adaptation on
Regressing 6D Object Pose
- arxiv url: http://arxiv.org/abs/2305.10808v1
- Date: Thu, 18 May 2023 08:42:41 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-19 16:14:29.578868
- Title: Manifold-Aware Self-Training for Unsupervised Domain Adaptation on
Regressing 6D Object Pose
- Title(参考訳): 6次元オブジェクトの回帰に対する教師なしドメイン適応のためのマニフォールド対応自己学習
- Authors: Yichen Zhang, Jiehong Lin, Ke Chen, Zelin Xu, Yaowei Wang and Kui Jia
- Abstract要約: 視覚的回帰における合成データと実データのドメインギャップは、グローバルな特徴アライメントと局所的な改善によって橋渡しされる。
提案手法は明示的な自己教師付き多様体正規化を取り入れ,領域間の一貫した累積的対象依存性を明らかにする。
暗黙的ニューラルファンクションを学習して、最も近いクラスビンへの相対的な方向と目標の距離を推定し、ターゲット分類予測を洗練することを目的としている。
- 参考スコア(独自算出の注目度): 40.04513698477504
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Domain gap between synthetic and real data in visual regression (\eg 6D pose
estimation) is bridged in this paper via global feature alignment and local
refinement on the coarse classification of discretized anchor classes in target
space, which imposes a piece-wise target manifold regularization into
domain-invariant representation learning. Specifically, our method incorporates
an explicit self-supervised manifold regularization, revealing consistent
cumulative target dependency across domains, to a self-training scheme (\eg the
popular Self-Paced Self-Training) to encourage more discriminative transferable
representations of regression tasks. Moreover, learning unified implicit neural
functions to estimate relative direction and distance of targets to their
nearest class bins aims to refine target classification predictions, which can
gain robust performance against inconsistent feature scaling sensitive to UDA
regressors. Experiment results on three public benchmarks of the challenging 6D
pose estimation task can verify the effectiveness of our method, consistently
achieving superior performance to the state-of-the-art for UDA on 6D pose
estimation.
- Abstract(参考訳): 視覚回帰における合成データと実データの間の領域ギャップ(\eg 6d pose estimation)は、対象空間における離散アンカークラスの粗い分類に関する大域的特徴アライメントと局所的細分化によって橋渡しされる。
具体的には,各領域間の一貫した累積的対象依存性を明らかにする明示的な自己教師付き多様体正規化を自己学習スキームに組み込み,より識別可能な回帰タスクの表現を促進する。
さらに、目標の相対的方向と最寄りのクラスビンまでの距離を推定するために、統一的な暗黙的な神経関数を学習することは、ターゲット分類予測を洗練することを目的としている。
課題6次元ポーズ推定タスクの3つの公開ベンチマークにおける実験結果から,提案手法の有効性を検証し,6次元ポーズ推定におけるudaの最先端性能を一貫して達成した。
関連論文リスト
- Mitigate Domain Shift by Primary-Auxiliary Objectives Association for
Generalizing Person ReID [39.98444065846305]
ReIDモデルは、インスタンス分類の目的に関するトレーニングを通じてのみドメイン不変表現を学ぶのに苦労します。
本稿では,弱いラベル付き歩行者唾液度検出のための補助学習目標を用いて,プライマリReIDインスタンス分類目標のモデル学習を指導する手法を提案する。
我々のモデルは、最近のテストタイムダイアグラムで拡張してPAOA+を形成し、補助的な目的に対してオンザフライ最適化を行うことができる。
論文 参考訳(メタデータ) (2023-10-24T15:15:57Z) - Randomized Adversarial Style Perturbations for Domain Generalization [49.888364462991234]
本稿では,RASP(Randomized Adversarial Style Perturbation)と呼ばれる新しい領域一般化手法を提案する。
提案アルゴリズムは, ランダムに選択されたクラスに対して, 対角方向の特徴のスタイルを乱し, 予期せぬ対象領域で観測される予期せぬスタイルに誤解されないよう, モデルを学習させる。
提案アルゴリズムは,様々なベンチマークによる広範な実験により評価され,特に大規模ベンチマークにおいて,領域一般化性能が向上することを示す。
論文 参考訳(メタデータ) (2023-04-04T17:07:06Z) - Self-training through Classifier Disagreement for Cross-Domain Opinion
Target Extraction [62.41511766918932]
オピニオンターゲット抽出(OTE)またはアスペクト抽出(AE)は意見マイニングの基本的な課題である。
最近の研究は、現実世界のシナリオでよく見られるクロスドメインのOTEに焦点を当てている。
そこで本稿では,ドメイン固有の教師と学生のネットワークから出力されるモデルが未学習のターゲットデータと一致しない対象サンプルを選択するためのSSLアプローチを提案する。
論文 参考訳(メタデータ) (2023-02-28T16:31:17Z) - Predicting Class Distribution Shift for Reliable Domain Adaptive Object
Detection [2.5193191501662144]
Unsupervised Domain Adaptive Object Detection (UDA-OD) は、オープンワールド環境におけるロボットビジョンシステムの信頼性を向上させるために、非ラベルデータを使用する。
自己学習に基づくUDA-ODに対する従来のアプローチは、画像の一般的な外観の変化を克服するのに有効である。
本稿では,自己学習における疑似ラベルの信頼性を向上させるために,クラス分散シフトに明示的に対処するフレームワークを提案する。
論文 参考訳(メタデータ) (2023-02-13T00:46:34Z) - Unsupervised Domain Adaptation for Monocular 3D Object Detection via
Self-Training [57.25828870799331]
我々は、Mono3D上での教師なしドメイン適応のための新しい自己学習フレームワークSTMono3Dを提案する。
対象ドメイン上で適応的な擬似ラベルを生成するための教師学生パラダイムを開発する。
STMono3Dは、評価されたすべてのデータセットで顕著なパフォーマンスを達成し、KITTI 3Dオブジェクト検出データセットの完全な教師付き結果を超えています。
論文 参考訳(メタデータ) (2022-04-25T12:23:07Z) - Boosting Unsupervised Domain Adaptation with Soft Pseudo-label and
Curriculum Learning [19.903568227077763]
教師なしドメイン適応(UDA)は、完全にラベル付けされたソースドメインからのデータを活用することにより、ラベル付けされていないターゲットドメインの分類性能を向上させる。
ソフトな擬似ラベル戦略を用いてモデル予測の欠陥を大幅に低減するモデルに依存しない2段階学習フレームワークを提案する。
第2段階では,2つのドメインの損失間の重み付けを適応的に制御するカリキュラム学習戦略を提案する。
論文 参考訳(メタデータ) (2021-12-03T14:47:32Z) - Learning Invariant Representations and Risks for Semi-supervised Domain
Adaptation [109.73983088432364]
半教師付きドメイン適応(Semi-DA)の設定の下で不変表現とリスクを同時に学習することを目的とした最初の手法を提案する。
共同で textbfLearning textbfInvariant textbfRepresentations と textbfRisks の LIRR アルゴリズムを導入する。
論文 参考訳(メタデータ) (2020-10-09T15:42:35Z) - Target Consistency for Domain Adaptation: when Robustness meets
Transferability [8.189696720657247]
学習不変表現(Learning Invariant Representations)は、ソースとUnsupervised Domain Adaptationのターゲットドメインの調整に成功している。
ソースドメインに保持されているにもかかわらず、クラスタの仮定がターゲットドメインで違反していることを示す。
我々の新しいアプローチは、画像分類とセグメンテーションベンチマークの両方において、大幅な改善をもたらす。
論文 参考訳(メタデータ) (2020-06-25T09:13:00Z) - Self-Guided Adaptation: Progressive Representation Alignment for Domain
Adaptive Object Detection [86.69077525494106]
非教師なしドメイン適応(UDA)は、オブジェクト検出モデルのドメイン間ロバスト性を改善するために前例のない成功を収めた。
既存のUDA手法は、モデル学習中の瞬間的なデータ分布を無視しており、大きなドメインシフトによって特徴表現が劣化する可能性がある。
本稿では、特徴表現の整合とドメイン間のオブジェクト検出モデルの転送を目標とする自己ガイド適応モデルを提案する。
論文 参考訳(メタデータ) (2020-03-19T13:30:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。