Uncertainty Estimation and Sample Selection for Crowd Counting
- URL: http://arxiv.org/abs/2009.14411v2
- Date: Sun, 4 Oct 2020 18:41:49 GMT
- Title: Uncertainty Estimation and Sample Selection for Crowd Counting
- Authors: Viresh Ranjan, Boyu Wang, Mubarak Shah, Minh Hoai
- Abstract summary: We present a method for image-based crowd counting that can predict a crowd density map together with the uncertainty values pertaining to the predicted density map.
A key advantage of our method over existing crowd counting methods is its ability to quantify the uncertainty of its predictions.
We show that our sample selection strategy drastically reduces the amount of labeled data needed to adapt a counting network trained on a source domain to the target domain.
- Score: 87.29137075538213
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present a method for image-based crowd counting, one that can predict a
crowd density map together with the uncertainty values pertaining to the
predicted density map. To obtain prediction uncertainty, we model the crowd
density values using Gaussian distributions and develop a convolutional neural
network architecture to predict these distributions. A key advantage of our
method over existing crowd counting methods is its ability to quantify the
uncertainty of its predictions. We illustrate the benefits of knowing the
prediction uncertainty by developing a method to reduce the human annotation
effort needed to adapt counting networks to a new domain. We present sample
selection strategies which make use of the density and uncertainty of
predictions from the networks trained on one domain to select the informative
images from a target domain of interest to acquire human annotation. We show
that our sample selection strategy drastically reduces the amount of labeled
data from the target domain needed to adapt a counting network trained on a
source domain to the target domain. Empirically, the networks trained on
UCF-QNRF dataset can be adapted to surpass the performance of the previous
state-of-the-art results on NWPU dataset and Shanghaitech dataset using only
17$\%$ of the labeled training samples from the target domain.
Related papers
- Distributionally Robust Machine Learning with Multi-source Data [6.383451076043423]
We introduce a group distributionally robust prediction model to optimize an adversarial reward about explained variance with respect to a class of target distributions.
Compared to classical empirical risk minimization, the proposed robust prediction model improves the prediction accuracy for target populations with distribution shifts.
We demonstrate the performance of our proposed group distributionally robust method on simulated and real data with random forests and neural networks as base-learning algorithms.
arXiv Detail & Related papers (2023-09-05T13:19:40Z) - Uncertainty Quantification in Deep Neural Networks through Statistical
Inference on Latent Space [0.0]
We develop an algorithm that exploits the latent-space representation of data points fed into the network to assess the accuracy of their prediction.
We show on a synthetic dataset that commonly used methods are mostly overconfident.
In contrast, our method can detect such out-of-distribution data points as inaccurately predicted, thus aiding in the automatic detection of outliers.
arXiv Detail & Related papers (2023-05-18T09:52:06Z) - Confidence estimation of classification based on the distribution of the
neural network output layer [4.529188601556233]
One of the most common problems preventing the application of prediction models in the real world is lack of generalization.
We propose novel methods that estimate uncertainty of particular predictions generated by a neural network classification model.
The proposed methods infer the confidence of a particular prediction based on the distribution of the logit values corresponding to this prediction.
arXiv Detail & Related papers (2022-10-14T12:32:50Z) - Uncertainty-guided Source-free Domain Adaptation [77.3844160723014]
Source-free domain adaptation (SFDA) aims to adapt a classifier to an unlabelled target data set by only using a pre-trained source model.
We propose quantifying the uncertainty in the source model predictions and utilizing it to guide the target adaptation.
arXiv Detail & Related papers (2022-08-16T08:03:30Z) - Improving Uncertainty Calibration via Prior Augmented Data [56.88185136509654]
Neural networks have proven successful at learning from complex data distributions by acting as universal function approximators.
They are often overconfident in their predictions, which leads to inaccurate and miscalibrated probabilistic predictions.
We propose a solution by seeking out regions of feature space where the model is unjustifiably overconfident, and conditionally raising the entropy of those predictions towards that of the prior distribution of the labels.
arXiv Detail & Related papers (2021-02-22T07:02:37Z) - Towards Trustworthy Predictions from Deep Neural Networks with Fast
Adversarial Calibration [2.8935588665357077]
We propose an efficient yet general modelling approach for obtaining well-calibrated, trustworthy probabilities for samples obtained after a domain shift.
We introduce a new training strategy combining an entropy-encouraging loss term with an adversarial calibration loss term and demonstrate that this results in well-calibrated and technically trustworthy predictions.
arXiv Detail & Related papers (2020-12-20T13:39:29Z) - Learning Calibrated Uncertainties for Domain Shift: A Distributionally
Robust Learning Approach [150.8920602230832]
We propose a framework for learning calibrated uncertainties under domain shifts.
In particular, the density ratio estimation reflects the closeness of a target (test) sample to the source (training) distribution.
We show that our proposed method generates calibrated uncertainties that benefit downstream tasks.
arXiv Detail & Related papers (2020-10-08T02:10:54Z) - Unlabelled Data Improves Bayesian Uncertainty Calibration under
Covariate Shift [100.52588638477862]
We develop an approximate Bayesian inference scheme based on posterior regularisation.
We demonstrate the utility of our method in the context of transferring prognostic models of prostate cancer across globally diverse populations.
arXiv Detail & Related papers (2020-06-26T13:50:19Z) - Diversity inducing Information Bottleneck in Model Ensembles [73.80615604822435]
In this paper, we target the problem of generating effective ensembles of neural networks by encouraging diversity in prediction.
We explicitly optimize a diversity inducing adversarial loss for learning latent variables and thereby obtain diversity in the output predictions necessary for modeling multi-modal data.
Compared to the most competitive baselines, we show significant improvements in classification accuracy, under a shift in the data distribution.
arXiv Detail & Related papers (2020-03-10T03:10:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.