論文の概要: Advancing Full-Text Search Lemmatization Techniques with Paradigm
Retrieval from OpenCorpora
- arxiv url: http://arxiv.org/abs/2305.10848v1
- Date: Thu, 18 May 2023 10:07:50 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-19 15:55:29.309600
- Title: Advancing Full-Text Search Lemmatization Techniques with Paradigm
Retrieval from OpenCorpora
- Title(参考訳): OpenCorporaによるパラダイム検索による全文検索書式化手法の改良
- Authors: Dmitriy Kalugin-Balashov
- Abstract要約: 我々は全文検索の補題化を増幅する画期的な手法を公表する。
我々の主な目的は、単語の主形または補題の抽出を合理化することである。
本稿では,レムマ検索の高速化と精度向上を図るため,コンパクトな辞書記憶方式を提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper, we unveil a groundbreaking method to amplify full-text search
lemmatization, utilizing the OpenCorpora dataset and a bespoke paradigm
retrieval algorithm. Our primary aim is to streamline the extraction of a
word's primary form or lemma - a crucial factor in full-text search.
Additionally, we propose a compact dictionary storage strategy, significantly
boosting the speed and precision of lemma retrieval.
- Abstract(参考訳): 本稿では,opencorporaデータセットとbespokeパラダイム検索アルゴリズムを用いて,全文検索の補間を増幅する画期的な手法を提案する。
我々の主な目的は、単語の主形や補題の抽出を合理化することであり、全文検索において重要な要素である。
さらに,レマ検索の速度と精度を大幅に向上させるコンパクト辞書保存戦略を提案する。
関連論文リスト
- VectorSearch: Enhancing Document Retrieval with Semantic Embeddings and
Optimized Search [1.0411820336052784]
本稿では、高度なアルゴリズム、埋め込み、インデックス化技術を活用して洗練された検索を行うVectorSearchを提案する。
提案手法は,革新的なマルチベクタ探索操作と高度な言語モデルによる検索の符号化を利用して,検索精度を大幅に向上させる。
実世界のデータセットの実験では、VectorSearchがベースラインのメトリクスを上回っている。
論文 参考訳(メタデータ) (2024-09-25T21:58:08Z) - Hybrid Semantic Search: Unveiling User Intent Beyond Keywords [0.0]
本稿では,ユーザの意図を理解する上で,従来のキーワードベースの検索の限界に対処する。
非意味的な検索エンジン、LLM(Large Language Models)、埋め込みモデルの強みを活用する新しいハイブリッド検索手法を導入する。
論文 参考訳(メタデータ) (2024-08-17T16:04:31Z) - Hierarchical Indexing for Retrieval-Augmented Opinion Summarization [60.5923941324953]
本稿では,抽出アプローチの帰属性と拡張性と,大規模言語モデル(LLM)の一貫性と拡散性を組み合わせた,教師なし抽象的意見要約手法を提案する。
我々の方法であるHIROは、意味的に整理された離散的な階層を通して文を経路にマッピングするインデックス構造を学習する。
推測時にインデックスを投入し、入力レビューから人気意見を含む文群を識別し、検索する。
論文 参考訳(メタデータ) (2024-03-01T10:38:07Z) - Dense X Retrieval: What Retrieval Granularity Should We Use? [56.90827473115201]
しばしば見過ごされる設計選択は、コーパスが索引付けされる検索単位である。
本稿では,高密度検索のための新しい検索ユニット,命題を提案する。
実験により、提案のような細粒度単位によるコーパスのインデックス付けは、検索タスクにおける通過レベル単位を著しく上回っていることが明らかとなった。
論文 参考訳(メタデータ) (2023-12-11T18:57:35Z) - Efficient Image-Text Retrieval via Keyword-Guided Pre-Screening [53.1711708318581]
現在の画像テキスト検索法は、N$関連時間複雑さに悩まされている。
本稿では,画像テキスト検索のための簡易かつ効果的なキーワード誘導事前スクリーニングフレームワークを提案する。
論文 参考訳(メタデータ) (2023-03-14T09:36:42Z) - Phrase Retrieval Learns Passage Retrieval, Too [77.57208968326422]
文節検索が,文節や文書を含む粗いレベルの検索の基盤となるかを検討する。
句検索システムでは,句検索の精度が向上し,句検索の精度が向上していることを示す。
また,句のフィルタリングやベクトル量子化により,インデックスのサイズを4~10倍に削減できることを示す。
論文 参考訳(メタデータ) (2021-09-16T17:42:45Z) - Neural Extractive Search [53.15076679818303]
ドメインの専門家は、しばしば大きなコーパスから構造化された情報を抽出する必要がある。
我々は「抽出探索」と呼ばれる探索パラダイムを提唱し、探索クエリをキャプチャスロットで強化する。
ニューラル検索とアライメントを用いてリコールをどのように改善できるかを示す。
論文 参考訳(メタデータ) (2021-06-08T18:03:31Z) - Quotient Space-Based Keyword Retrieval in Sponsored Search [7.639289301435027]
代名詞検索は, 代名詞検索において重要な問題となっている。
本稿では,この問題に対処する新しい空間探索フレームワークを提案する。
この方法はBaiduのオンライン検索システムでうまく実装されている。
論文 参考訳(メタデータ) (2021-05-26T07:27:54Z) - Progressively Pretrained Dense Corpus Index for Open-Domain Question
Answering [87.32442219333046]
本稿では,段落エンコーダを事前学習するための簡易かつ資源効率の高い手法を提案する。
本手法は,事前学習に7倍の計算資源を使用する既存の高密度検索法より優れている。
論文 参考訳(メタデータ) (2020-04-30T18:09:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。