論文の概要: Meta-Auxiliary Network for 3D GAN Inversion
- arxiv url: http://arxiv.org/abs/2305.10884v1
- Date: Thu, 18 May 2023 11:26:27 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-19 15:34:53.644005
- Title: Meta-Auxiliary Network for 3D GAN Inversion
- Title(参考訳): 3次元ganインバージョンのためのメタオーザリーネットワーク
- Authors: Bangrui Jiang, Zhenhua Guo, Yujiu Yang
- Abstract要約: 本稿では,新たに開発された3D GANをジェネレータとして利用しながら,新しいメタ補助フレームワークを提案する。
最初の段階では、オフザシェルフインバージョン技術を用いて、入力画像を編集可能な潜在コードに変換する。
補助的ネットワークは、与えられた画像を入力としてジェネレータパラメータを洗練し、畳み込み層の重み付けとボリュームレンダリングのサンプリング位置のオフセットを予測する。
第2段階では、入力された画像に補助ネットワークを高速に適応させるメタラーニングを行い、その後、メタラーニングされた補助ネットワークを介して最終再構成画像を合成する。
- 参考スコア(独自算出の注目度): 18.777352198191004
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Real-world image manipulation has achieved fantastic progress in recent
years. GAN inversion, which aims to map the real image to the latent code
faithfully, is the first step in this pipeline. However, existing GAN inversion
methods fail to achieve high reconstruction quality and fast inference at the
same time. In addition, existing methods are built on 2D GANs and lack
explicitly mechanisms to enforce multi-view consistency.In this work, we
present a novel meta-auxiliary framework, while leveraging the newly developed
3D GANs as generator. The proposed method adopts a two-stage strategy. In the
first stage, we invert the input image to an editable latent code using
off-the-shelf inversion techniques. The auxiliary network is proposed to refine
the generator parameters with the given image as input, which both predicts
offsets for weights of convolutional layers and sampling positions of volume
rendering. In the second stage, we perform meta-learning to fast adapt the
auxiliary network to the input image, then the final reconstructed image is
synthesized via the meta-learned auxiliary network. Extensive experiments show
that our method achieves better performances on both inversion and editing
tasks.
- Abstract(参考訳): 近年,実世界の画像操作は素晴らしい進歩を遂げている。
GANインバージョンは、実際のイメージを潜在コードに忠実にマッピングすることを目的としており、このパイプラインの最初のステップである。
しかし,既存のGANインバージョン手法では高い復元品質と高速な推論を同時に達成できない。
また,既存の手法は2D GAN上に構築されており,多視点一貫性を実現するための明確なメカニズムが欠如しているため,新たに開発された3D GANをジェネレータとして活用しながら,新しいメタ補助フレームワークを提案する。
提案手法は2段階戦略を採用する。
最初の段階では、オフザシェルフインバージョン技術を用いて、入力画像を編集可能な潜在コードに変換する。
本手法では,畳み込み層の重みとボリュームレンダリングのサンプリング位置のオフセットを予測し,入力画像で生成パラメータを洗練する補助ネットワークを提案する。
第2段階では、入力画像に補助ネットワークを高速に適応させるメタラーニングを行い、その後、メタラーニングされた補助ネットワークを介して最終再構成画像を合成する。
広範囲にわたる実験により,本手法はインバージョン処理と編集処理の両方において優れた性能を実現することが示された。
関連論文リスト
- Double-Shot 3D Shape Measurement with a Dual-Branch Network [14.749887303860717]
我々は、異なる構造光(SL)変調を処理するために、デュアルブランチ畳み込みニューラルネットワーク(CNN)-トランスフォーマーネットワーク(PDCNet)を提案する。
PDCNet内では、Transformerブランチを使用してフリンジイメージのグローバルな認識をキャプチャし、CNNブランチはスペックルイメージのローカル詳細を収集するように設計されている。
提案手法は, 自己生成データセット上で高精度な結果が得られる一方で, フランジオーダーの曖昧さを低減できることを示す。
論文 参考訳(メタデータ) (2024-07-19T10:49:26Z) - Hyper-VolTran: Fast and Generalizable One-Shot Image to 3D Object
Structure via HyperNetworks [53.67497327319569]
画像から3Dまでを1つの視点から解く新しいニューラルレンダリング手法を提案する。
提案手法では, 符号付き距離関数を表面表現として使用し, 幾何エンコードボリュームとハイパーネットワークスによる一般化可能な事前処理を取り入れた。
本実験は,一貫した結果と高速な生成による提案手法の利点を示す。
論文 参考訳(メタデータ) (2023-12-24T08:42:37Z) - Triplane Meets Gaussian Splatting: Fast and Generalizable Single-View 3D
Reconstruction with Transformers [37.14235383028582]
本稿では,フィードフォワード推論を用いて,単一画像から3次元モデルを効率よく生成する,一視点再構成のための新しい手法を提案する。
提案手法では,2つのトランスフォーマーネットワーク,すなわちポイントデコーダとトリプレーンデコーダを用いて,ハイブリッドトリプレーン・ガウス中間表現を用いて3次元オブジェクトを再構成する。
論文 参考訳(メタデータ) (2023-12-14T17:18:34Z) - In-Domain GAN Inversion for Faithful Reconstruction and Editability [132.68255553099834]
ドメイン誘導型ドメイン正規化とエンコーダで構成されたドメイン内GANインバージョンを提案し、事前学習されたGANモデルのネイティブ潜在空間における反転コードを正規化する。
エンコーダ構造,開始反転点,および逆パラメータ空間の効果を総合的に解析し,再構成品質と編集特性とのトレードオフを観察する。
論文 参考訳(メタデータ) (2023-09-25T08:42:06Z) - TriPlaneNet: An Encoder for EG3D Inversion [1.9567015559455132]
NeRFをベースとしたGANは、人間の頭部の高分解能かつ高忠実な生成モデリングのための多くのアプローチを導入している。
2D GANインバージョンのための普遍的最適化に基づく手法の成功にもかかわらず、3D GANに適用された手法は、結果を新しい視点に外挿することができないかもしれない。
本稿では,EG3D生成モデルに提示された3面表現を直接利用することにより,両者のギャップを埋める高速な手法を提案する。
論文 参考訳(メタデータ) (2023-03-23T17:56:20Z) - StraIT: Non-autoregressive Generation with Stratified Image Transformer [63.158996766036736]
Stratified Image Transformer(StraIT)は、純粋な非自己回帰(NAR)生成モデルである。
実験の結果,StraIT は NAR 生成を著しく改善し,既存の DM および AR 手法より優れていた。
論文 参考訳(メタデータ) (2023-03-01T18:59:33Z) - High-fidelity 3D GAN Inversion by Pseudo-multi-view Optimization [51.878078860524795]
フォトリアリスティック・ノベルビューを合成可能な高忠実度3次元生成対向ネットワーク(GAN)インバージョン・フレームワークを提案する。
提案手法は,1枚の画像から高忠実度3Dレンダリングを可能にし,AI生成3Dコンテンツの様々な応用に期待できる。
論文 参考訳(メタデータ) (2022-11-28T18:59:52Z) - 3D-Aware Encoding for Style-based Neural Radiance Fields [50.118687869198716]
我々は、入力画像をNeRFジェネレータの潜時空間に投影する反転関数を学び、潜時符号に基づいて原画像の新しいビューを合成する。
2次元生成モデルのGANインバージョンと比較して、NeRFインバージョンは、1)入力画像の同一性を維持するだけでなく、2)生成した新規なビューにおいて3D一貫性を確保する必要がある。
スタイルベースNeRFインバージョンのための2段階エンコーダを提案する。
論文 参考訳(メタデータ) (2022-11-12T06:14:12Z) - Multi-initialization Optimization Network for Accurate 3D Human Pose and
Shape Estimation [75.44912541912252]
我々はMulti-Initialization Optimization Network(MION)という3段階のフレームワークを提案する。
第1段階では,入力サンプルの2次元キーポイントに適合する粗い3次元再構成候補を戦略的に選択する。
第2段階では, メッシュ改質トランス (MRT) を設計し, 自己保持機構を用いて粗い再構成結果をそれぞれ洗練する。
最後に,RGB画像の視覚的証拠が与えられた3次元再構成と一致するかどうかを評価することで,複数の候補から最高の結果を得るために,一貫性推定ネットワーク(CEN)を提案する。
論文 参考訳(メタデータ) (2021-12-24T02:43:58Z) - HyperInverter: Improving StyleGAN Inversion via Hypernetwork [12.173568611144628]
現在のGANインバージョン手法は、以下の3つの要件の少なくとも1つを満たさない:高い再構成品質、編集性、高速推論。
本研究では,全ての要件を同時に満たす新しい2段階戦略を提案する。
我々の手法は完全にエンコーダベースであり、非常に高速な推論をもたらす。
論文 参考訳(メタデータ) (2021-12-01T18:56:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。