Student-friendly Knowledge Distillation
- URL: http://arxiv.org/abs/2305.10893v1
- Date: Thu, 18 May 2023 11:44:30 GMT
- Title: Student-friendly Knowledge Distillation
- Authors: Mengyang Yuan, Bo Lang, Fengnan Quan
- Abstract summary: We propose student-friendly knowledge distillation (SKD) to simplify teacher output into new knowledge representations.
SKD contains a softening processing and a learning simplifier.
The experimental results on the CIFAR-100 and ImageNet datasets show that our method achieves state-of-the-art performance.
- Score: 1.5469452301122173
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In knowledge distillation, the knowledge from the teacher model is often too
complex for the student model to thoroughly process. However, good teachers in
real life always simplify complex material before teaching it to students.
Inspired by this fact, we propose student-friendly knowledge distillation (SKD)
to simplify teacher output into new knowledge representations, which makes the
learning of the student model easier and more effective. SKD contains a
softening processing and a learning simplifier. First, the softening processing
uses the temperature hyperparameter to soften the output logits of the teacher
model, which simplifies the output to some extent and makes it easier for the
learning simplifier to process. The learning simplifier utilizes the attention
mechanism to further simplify the knowledge of the teacher model and is jointly
trained with the student model using the distillation loss, which means that
the process of simplification is correlated with the training objective of the
student model and ensures that the simplified new teacher knowledge
representation is more suitable for the specific student model. Furthermore,
since SKD does not change the form of the distillation loss, it can be easily
combined with other distillation methods that are based on the logits or
features of intermediate layers to enhance its effectiveness. Therefore, SKD
has wide applicability. The experimental results on the CIFAR-100 and ImageNet
datasets show that our method achieves state-of-the-art performance while
maintaining high training efficiency.
Related papers
- LAKD-Activation Mapping Distillation Based on Local Learning [12.230042188890838]
This paper proposes a novel knowledge distillation framework, Local Attention Knowledge Distillation (LAKD)
LAKD more efficiently utilizes the distilled information from teacher networks, achieving higher interpretability and competitive performance.
We conducted experiments on the CIFAR-10, CIFAR-100, and ImageNet datasets, and the results show that our LAKD method significantly outperforms existing methods.
arXiv Detail & Related papers (2024-08-21T09:43:27Z) - Distillation from Heterogeneous Models for Top-K Recommendation [43.83625440616829]
HetComp is a framework that guides the student model by transferring sequences of knowledge from teachers' trajectories.
HetComp significantly improves the distillation quality and the generalization of the student model.
arXiv Detail & Related papers (2023-03-02T10:23:50Z) - Teaching What You Should Teach: A Data-Based Distillation Method [20.595460553747163]
We introduce the "Teaching what you Should Teach" strategy into a knowledge distillation framework.
We propose a data-based distillation method named "TST" that searches for desirable augmented samples to assist in distilling more efficiently and rationally.
To be specific, we design a neural network-based data augmentation module with priori bias, which assists in finding what meets the teacher's strengths but the student's weaknesses.
arXiv Detail & Related papers (2022-12-11T06:22:14Z) - On the benefits of knowledge distillation for adversarial robustness [53.41196727255314]
We show that knowledge distillation can be used directly to boost the performance of state-of-the-art models in adversarial robustness.
We present Adversarial Knowledge Distillation (AKD), a new framework to improve a model's robust performance.
arXiv Detail & Related papers (2022-03-14T15:02:13Z) - Dynamic Rectification Knowledge Distillation [0.0]
Dynamic Rectification Knowledge Distillation (DR-KD) is a knowledge distillation framework.
DR-KD transforms the student into its own teacher, and if the self-teacher makes wrong predictions while distilling information, the error is rectified prior to the knowledge being distilled.
Our proposed DR-KD performs remarkably well in the absence of a sophisticated cumbersome teacher model.
arXiv Detail & Related papers (2022-01-27T04:38:01Z) - Learning to Teach with Student Feedback [67.41261090761834]
Interactive Knowledge Distillation (IKD) allows the teacher to learn to teach from the feedback of the student.
IKD trains the teacher model to generate specific soft target at each training step for a certain student.
Joint optimization for both teacher and student is achieved by two iterative steps.
arXiv Detail & Related papers (2021-09-10T03:01:01Z) - Annealing Knowledge Distillation [5.396407687999048]
We propose an improved knowledge distillation method (called Annealing-KD) by feeding the rich information provided by the teacher's soft-targets incrementally and more efficiently.
This paper includes theoretical and empirical evidence as well as practical experiments to support the effectiveness of our Annealing-KD method.
arXiv Detail & Related papers (2021-04-14T23:45:03Z) - Fixing the Teacher-Student Knowledge Discrepancy in Distillation [72.4354883997316]
We propose a novel student-dependent distillation method, knowledge consistent distillation, which makes teacher's knowledge more consistent with the student.
Our method is very flexible that can be easily combined with other state-of-the-art approaches.
arXiv Detail & Related papers (2021-03-31T06:52:20Z) - Learning Student-Friendly Teacher Networks for Knowledge Distillation [50.11640959363315]
We propose a novel knowledge distillation approach to facilitate the transfer of dark knowledge from a teacher to a student.
Contrary to most of the existing methods that rely on effective training of student models given pretrained teachers, we aim to learn the teacher models that are friendly to students.
arXiv Detail & Related papers (2021-02-12T07:00:17Z) - Reinforced Multi-Teacher Selection for Knowledge Distillation [54.72886763796232]
knowledge distillation is a popular method for model compression.
Current methods assign a fixed weight to a teacher model in the whole distillation.
Most of the existing methods allocate an equal weight to every teacher model.
In this paper, we observe that, due to the complexity of training examples and the differences in student model capability, learning differentially from teacher models can lead to better performance of student models distilled.
arXiv Detail & Related papers (2020-12-11T08:56:39Z) - Residual Knowledge Distillation [96.18815134719975]
This work proposes Residual Knowledge Distillation (RKD), which further distills the knowledge by introducing an assistant (A)
In this way, S is trained to mimic the feature maps of T, and A aids this process by learning the residual error between them.
Experiments show that our approach achieves appealing results on popular classification datasets, CIFAR-100 and ImageNet.
arXiv Detail & Related papers (2020-02-21T07:49:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.