LAKD-Activation Mapping Distillation Based on Local Learning
- URL: http://arxiv.org/abs/2408.11478v2
- Date: Thu, 22 Aug 2024 04:29:58 GMT
- Title: LAKD-Activation Mapping Distillation Based on Local Learning
- Authors: Yaoze Zhang, Yuming Zhang, Yu Zhao, Yue Zhang, Feiyu Zhu,
- Abstract summary: This paper proposes a novel knowledge distillation framework, Local Attention Knowledge Distillation (LAKD)
LAKD more efficiently utilizes the distilled information from teacher networks, achieving higher interpretability and competitive performance.
We conducted experiments on the CIFAR-10, CIFAR-100, and ImageNet datasets, and the results show that our LAKD method significantly outperforms existing methods.
- Score: 12.230042188890838
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Knowledge distillation is widely applied in various fundamental vision models to enhance the performance of compact models. Existing knowledge distillation methods focus on designing different distillation targets to acquire knowledge from teacher models. However, these methods often overlook the efficient utilization of distilled information, crudely coupling different types of information, making it difficult to explain how the knowledge from the teacher network aids the student network in learning. This paper proposes a novel knowledge distillation framework, Local Attention Knowledge Distillation (LAKD), which more efficiently utilizes the distilled information from teacher networks, achieving higher interpretability and competitive performance. The framework establishes an independent interactive training mechanism through a separation-decoupling mechanism and non-directional activation mapping. LAKD decouples the teacher's features and facilitates progressive interaction training from simple to complex. Specifically, the student network is divided into local modules with independent gradients to decouple the knowledge transferred from the teacher. The non-directional activation mapping helps the student network integrate knowledge from different local modules by learning coarse-grained feature knowledge. We conducted experiments on the CIFAR-10, CIFAR-100, and ImageNet datasets, and the results show that our LAKD method significantly outperforms existing methods, consistently achieving state-of-the-art performance across different datasets.
Related papers
- Student-Oriented Teacher Knowledge Refinement for Knowledge Distillation [11.754014876977422]
This paper introduces a novel perspective emphasizing student-oriented and refining the teacher's knowledge to better align with the student's needs.
We present the Student-Oriented Knowledge Distillation (SoKD), which incorporates a learnable feature augmentation strategy during training.
We also deploy the Distinctive Area Detection Module (DAM) to identify areas of mutual interest between the teacher and student.
arXiv Detail & Related papers (2024-09-27T14:34:08Z) - Hint-dynamic Knowledge Distillation [30.40008256306688]
Hint-dynamic Knowledge Distillation, dubbed HKD, excavates the knowledge from the teacher's hints in a dynamic scheme.
A meta-weight network is introduced to generate the instance-wise weight coefficients about knowledge hints.
Experiments on standard benchmarks of CIFAR-100 and Tiny-ImageNet manifest that the proposed HKD well boost the effect of knowledge distillation tasks.
arXiv Detail & Related papers (2022-11-30T15:03:53Z) - Learning Knowledge Representation with Meta Knowledge Distillation for
Single Image Super-Resolution [82.89021683451432]
We propose a model-agnostic meta knowledge distillation method under the teacher-student architecture for the single image super-resolution task.
Experiments conducted on various single image super-resolution datasets demonstrate that our proposed method outperforms existing defined knowledge representation related distillation methods.
arXiv Detail & Related papers (2022-07-18T02:41:04Z) - Annealing Knowledge Distillation [5.396407687999048]
We propose an improved knowledge distillation method (called Annealing-KD) by feeding the rich information provided by the teacher's soft-targets incrementally and more efficiently.
This paper includes theoretical and empirical evidence as well as practical experiments to support the effectiveness of our Annealing-KD method.
arXiv Detail & Related papers (2021-04-14T23:45:03Z) - Refine Myself by Teaching Myself: Feature Refinement via Self-Knowledge
Distillation [12.097302014936655]
This paper proposes a novel self-knowledge distillation method, Feature Refinement via Self-Knowledge Distillation (FRSKD)
Our proposed method, FRSKD, can utilize both soft label and feature-map distillations for the self-knowledge distillation.
We demonstrate the effectiveness of FRSKD by enumerating its performance improvements in diverse tasks and benchmark datasets.
arXiv Detail & Related papers (2021-03-15T10:59:43Z) - Collaborative Teacher-Student Learning via Multiple Knowledge Transfer [79.45526596053728]
We propose a collaborative teacher-student learning via multiple knowledge transfer (CTSL-MKT)
It allows multiple students learn knowledge from both individual instances and instance relations in a collaborative way.
The experiments and ablation studies on four image datasets demonstrate that the proposed CTSL-MKT significantly outperforms the state-of-the-art KD methods.
arXiv Detail & Related papers (2021-01-21T07:17:04Z) - Towards Understanding Ensemble, Knowledge Distillation and
Self-Distillation in Deep Learning [93.18238573921629]
We study how Ensemble of deep learning models can improve test accuracy, and how the superior performance of ensemble can be distilled into a single model.
We show that ensemble/knowledge distillation in deep learning works very differently from traditional learning theory.
We prove that self-distillation can also be viewed as implicitly combining ensemble and knowledge distillation to improve test accuracy.
arXiv Detail & Related papers (2020-12-17T18:34:45Z) - Wasserstein Contrastive Representation Distillation [114.24609306495456]
We propose Wasserstein Contrastive Representation Distillation (WCoRD), which leverages both primal and dual forms of Wasserstein distance for knowledge distillation.
The dual form is used for global knowledge transfer, yielding a contrastive learning objective that maximizes the lower bound of mutual information between the teacher and the student networks.
Experiments demonstrate that the proposed WCoRD method outperforms state-of-the-art approaches on privileged information distillation, model compression and cross-modal transfer.
arXiv Detail & Related papers (2020-12-15T23:43:28Z) - Interactive Knowledge Distillation [79.12866404907506]
We propose an InterActive Knowledge Distillation scheme to leverage the interactive teaching strategy for efficient knowledge distillation.
In the distillation process, the interaction between teacher and student networks is implemented by a swapping-in operation.
Experiments with typical settings of teacher-student networks demonstrate that the student networks trained by our IAKD achieve better performance than those trained by conventional knowledge distillation methods.
arXiv Detail & Related papers (2020-07-03T03:22:04Z) - Knowledge Distillation Meets Self-Supervision [109.6400639148393]
Knowledge distillation involves extracting "dark knowledge" from a teacher network to guide the learning of a student network.
We show that the seemingly different self-supervision task can serve as a simple yet powerful solution.
By exploiting the similarity between those self-supervision signals as an auxiliary task, one can effectively transfer the hidden information from the teacher to the student.
arXiv Detail & Related papers (2020-06-12T12:18:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.