SPENSER: Towards a NeuroEvolutionary Approach for Convolutional Spiking
Neural Networks
- URL: http://arxiv.org/abs/2305.10987v1
- Date: Thu, 18 May 2023 14:06:37 GMT
- Title: SPENSER: Towards a NeuroEvolutionary Approach for Convolutional Spiking
Neural Networks
- Authors: Henrique Branquinho, Nuno Louren\c{c}o, Ernesto Costa
- Abstract summary: Spiking Neural Networks (SNNs) have attracted recent interest due to their energy efficiency and biological plausibility.
There is no consensus on the best learning algorithm for SNNs.
In this paper, we propose SPENSER, a framework for SNN generation based on DENSER.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Spiking Neural Networks (SNNs) have attracted recent interest due to their
energy efficiency and biological plausibility. However, the performance of SNNs
still lags behind traditional Artificial Neural Networks (ANNs), as there is no
consensus on the best learning algorithm for SNNs. Best-performing SNNs are
based on ANN to SNN conversion or learning with spike-based backpropagation
through surrogate gradients. The focus of recent research has been on
developing and testing different learning strategies, with hand-tailored
architectures and parameter tuning. Neuroevolution (NE), has proven successful
as a way to automatically design ANNs and tune parameters, but its applications
to SNNs are still at an early stage. DENSER is a NE framework for the automatic
design and parametrization of ANNs, based on the principles of Genetic
Algorithms (GA) and Structured Grammatical Evolution (SGE). In this paper, we
propose SPENSER, a NE framework for SNN generation based on DENSER, for image
classification on the MNIST and Fashion-MNIST datasets. SPENSER generates
competitive performing networks with a test accuracy of 99.42% and 91.65%
respectively.
Related papers
- Optimal ANN-SNN Conversion with Group Neurons [39.14228133571838]
Spiking Neural Networks (SNNs) have emerged as a promising third generation of neural networks.
The lack of effective learning algorithms remains a challenge for SNNs.
We introduce a novel type of neuron called Group Neurons (GNs)
arXiv Detail & Related papers (2024-02-29T11:41:12Z) - LC-TTFS: Towards Lossless Network Conversion for Spiking Neural Networks
with TTFS Coding [55.64533786293656]
We show that our algorithm can achieve a near-perfect mapping between the activation values of an ANN and the spike times of an SNN on a number of challenging AI tasks.
The study paves the way for deploying ultra-low-power TTFS-based SNNs on power-constrained edge computing platforms.
arXiv Detail & Related papers (2023-10-23T14:26:16Z) - A Hybrid Neural Coding Approach for Pattern Recognition with Spiking
Neural Networks [53.31941519245432]
Brain-inspired spiking neural networks (SNNs) have demonstrated promising capabilities in solving pattern recognition tasks.
These SNNs are grounded on homogeneous neurons that utilize a uniform neural coding for information representation.
In this study, we argue that SNN architectures should be holistically designed to incorporate heterogeneous coding schemes.
arXiv Detail & Related papers (2023-05-26T02:52:12Z) - Joint A-SNN: Joint Training of Artificial and Spiking Neural Networks
via Self-Distillation and Weight Factorization [12.1610509770913]
Spiking Neural Networks (SNNs) mimic the spiking nature of brain neurons.
We propose a joint training framework of ANN and SNN, in which the ANN can guide the SNN's optimization.
Our method consistently outperforms many other state-of-the-art training methods.
arXiv Detail & Related papers (2023-05-03T13:12:17Z) - LaSNN: Layer-wise ANN-to-SNN Distillation for Effective and Efficient
Training in Deep Spiking Neural Networks [7.0691139514420005]
Spiking Neural Networks (SNNs) are biologically realistic and practically promising in low-power because of their event-driven mechanism.
A conversion scheme is proposed to obtain competitive accuracy by mapping trained ANNs' parameters to SNNs with the same structures.
A novel SNN training framework is proposed, namely layer-wise ANN-to-SNN knowledge distillation (LaSNN)
arXiv Detail & Related papers (2023-04-17T03:49:35Z) - Hybrid Spiking Neural Network Fine-tuning for Hippocampus Segmentation [3.1247096708403914]
Spiking neural networks (SNNs) have emerged as a low-power alternative to artificial neural networks (ANNs)
In this work, we propose a hybrid SNN training scheme and apply it to segment human hippocampi from magnetic resonance images.
arXiv Detail & Related papers (2023-02-14T20:18:57Z) - SNN2ANN: A Fast and Memory-Efficient Training Framework for Spiking
Neural Networks [117.56823277328803]
Spiking neural networks are efficient computation models for low-power environments.
We propose a SNN-to-ANN (SNN2ANN) framework to train the SNN in a fast and memory-efficient way.
Experiment results show that our SNN2ANN-based models perform well on the benchmark datasets.
arXiv Detail & Related papers (2022-06-19T16:52:56Z) - Training High-Performance Low-Latency Spiking Neural Networks by
Differentiation on Spike Representation [70.75043144299168]
Spiking Neural Network (SNN) is a promising energy-efficient AI model when implemented on neuromorphic hardware.
It is a challenge to efficiently train SNNs due to their non-differentiability.
We propose the Differentiation on Spike Representation (DSR) method, which could achieve high performance.
arXiv Detail & Related papers (2022-05-01T12:44:49Z) - Beyond Classification: Directly Training Spiking Neural Networks for
Semantic Segmentation [5.800785186389827]
Spiking Neural Networks (SNNs) have emerged as the low-power alternative to Artificial Neural Networks (ANNs)
In this paper, we explore the SNN applications beyond classification and present semantic segmentation networks configured with spiking neurons.
arXiv Detail & Related papers (2021-10-14T21:53:03Z) - Progressive Tandem Learning for Pattern Recognition with Deep Spiking
Neural Networks [80.15411508088522]
Spiking neural networks (SNNs) have shown advantages over traditional artificial neural networks (ANNs) for low latency and high computational efficiency.
We propose a novel ANN-to-SNN conversion and layer-wise learning framework for rapid and efficient pattern recognition.
arXiv Detail & Related papers (2020-07-02T15:38:44Z) - You Only Spike Once: Improving Energy-Efficient Neuromorphic Inference
to ANN-Level Accuracy [51.861168222799186]
Spiking Neural Networks (SNNs) are a type of neuromorphic, or brain-inspired network.
SNNs are sparse, accessing very few weights, and typically only use addition operations instead of the more power-intensive multiply-and-accumulate operations.
In this work, we aim to overcome the limitations of TTFS-encoded neuromorphic systems.
arXiv Detail & Related papers (2020-06-03T15:55:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.