SNN2ANN: A Fast and Memory-Efficient Training Framework for Spiking
Neural Networks
- URL: http://arxiv.org/abs/2206.09449v1
- Date: Sun, 19 Jun 2022 16:52:56 GMT
- Title: SNN2ANN: A Fast and Memory-Efficient Training Framework for Spiking
Neural Networks
- Authors: Jianxiong Tang, Jianhuang Lai, Xiaohua Xie, Lingxiao Yang, Wei-Shi
Zheng
- Abstract summary: Spiking neural networks are efficient computation models for low-power environments.
We propose a SNN-to-ANN (SNN2ANN) framework to train the SNN in a fast and memory-efficient way.
Experiment results show that our SNN2ANN-based models perform well on the benchmark datasets.
- Score: 117.56823277328803
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Spiking neural networks are efficient computation models for low-power
environments. Spike-based BP algorithms and ANN-to-SNN (ANN2SNN) conversions
are successful techniques for SNN training. Nevertheless, the spike-base BP
training is slow and requires large memory costs. Though ANN2NN provides a
low-cost way to train SNNs, it requires many inference steps to mimic the
well-trained ANN for good performance. In this paper, we propose a SNN-to-ANN
(SNN2ANN) framework to train the SNN in a fast and memory-efficient way. The
SNN2ANN consists of 2 components: a) a weight sharing architecture between ANN
and SNN and b) spiking mapping units. Firstly, the architecture trains the
weight-sharing parameters on the ANN branch, resulting in fast training and low
memory costs for SNN. Secondly, the spiking mapping units ensure that the
activation values of the ANN are the spiking features. As a result, the
classification error of the SNN can be optimized by training the ANN branch.
Besides, we design an adaptive threshold adjustment (ATA) algorithm to address
the noisy spike problem. Experiment results show that our SNN2ANN-based models
perform well on the benchmark datasets (CIFAR10, CIFAR100, and Tiny-ImageNet).
Moreover, the SNN2ANN can achieve comparable accuracy under 0.625x time steps,
0.377x training time, 0.27x GPU memory costs, and 0.33x spike activities of the
Spike-based BP model.
Related papers
- NAS-BNN: Neural Architecture Search for Binary Neural Networks [55.058512316210056]
We propose a novel neural architecture search scheme for binary neural networks, named NAS-BNN.
Our discovered binary model family outperforms previous BNNs for a wide range of operations (OPs) from 20M to 200M.
In addition, we validate the transferability of these searched BNNs on the object detection task, and our binary detectors with the searched BNNs achieve a novel state-of-the-art result, e.g., 31.6% mAP with 370M OPs, on MS dataset.
arXiv Detail & Related papers (2024-08-28T02:17:58Z) - Joint A-SNN: Joint Training of Artificial and Spiking Neural Networks
via Self-Distillation and Weight Factorization [12.1610509770913]
Spiking Neural Networks (SNNs) mimic the spiking nature of brain neurons.
We propose a joint training framework of ANN and SNN, in which the ANN can guide the SNN's optimization.
Our method consistently outperforms many other state-of-the-art training methods.
arXiv Detail & Related papers (2023-05-03T13:12:17Z) - LaSNN: Layer-wise ANN-to-SNN Distillation for Effective and Efficient
Training in Deep Spiking Neural Networks [7.0691139514420005]
Spiking Neural Networks (SNNs) are biologically realistic and practically promising in low-power because of their event-driven mechanism.
A conversion scheme is proposed to obtain competitive accuracy by mapping trained ANNs' parameters to SNNs with the same structures.
A novel SNN training framework is proposed, namely layer-wise ANN-to-SNN knowledge distillation (LaSNN)
arXiv Detail & Related papers (2023-04-17T03:49:35Z) - Spikeformer: A Novel Architecture for Training High-Performance
Low-Latency Spiking Neural Network [6.8125324121155275]
We propose a novel Transformer-based SNN,termed "Spikeformer",which outperforms its ANN counterpart on both static dataset and neuromorphic dataset.
Remarkably,our Spikeformer outperforms other SNNs on ImageNet by a large margin (i.e.more than 5%) and even outperforms its ANN counterpart by 3.1% and 2.2% on DVS-Gesture and ImageNet.
arXiv Detail & Related papers (2022-11-19T12:49:22Z) - A noise based novel strategy for faster SNN training [0.0]
Spiking neural networks (SNNs) are receiving increasing attention due to their low power consumption and strong bio-plausibility.
Two main methods, artificial neural network (ANN)-to-SNN conversion and spike-based backpropagation (BP), both have their advantages and limitations.
We propose a novel SNN training approach that combines the benefits of the two methods.
arXiv Detail & Related papers (2022-11-10T09:59:04Z) - Spatial-Temporal-Fusion BNN: Variational Bayesian Feature Layer [77.78479877473899]
We design a spatial-temporal-fusion BNN for efficiently scaling BNNs to large models.
Compared to vanilla BNNs, our approach can greatly reduce the training time and the number of parameters, which contributes to scale BNNs efficiently.
arXiv Detail & Related papers (2021-12-12T17:13:14Z) - Sub-bit Neural Networks: Learning to Compress and Accelerate Binary
Neural Networks [72.81092567651395]
Sub-bit Neural Networks (SNNs) are a new type of binary quantization design tailored to compress and accelerate BNNs.
SNNs are trained with a kernel-aware optimization framework, which exploits binary quantization in the fine-grained convolutional kernel space.
Experiments on visual recognition benchmarks and the hardware deployment on FPGA validate the great potentials of SNNs.
arXiv Detail & Related papers (2021-10-18T11:30:29Z) - Kernel Based Progressive Distillation for Adder Neural Networks [71.731127378807]
Adder Neural Networks (ANNs) which only contain additions bring us a new way of developing deep neural networks with low energy consumption.
There is an accuracy drop when replacing all convolution filters by adder filters.
We present a novel method for further improving the performance of ANNs without increasing the trainable parameters.
arXiv Detail & Related papers (2020-09-28T03:29:19Z) - Training Deep Spiking Neural Networks [0.0]
Brain-inspired spiking neural networks (SNNs) with neuromorphic hardware may offer orders of magnitude higher energy efficiency.
We show that is is possible to train SNN with ResNet50 architecture on CIFAR100 and Imagenette object recognition datasets.
The trained SNN falls behind in accuracy compared to analogous ANN but requires several orders of magnitude less inference time steps.
arXiv Detail & Related papers (2020-06-08T09:47:05Z) - You Only Spike Once: Improving Energy-Efficient Neuromorphic Inference
to ANN-Level Accuracy [51.861168222799186]
Spiking Neural Networks (SNNs) are a type of neuromorphic, or brain-inspired network.
SNNs are sparse, accessing very few weights, and typically only use addition operations instead of the more power-intensive multiply-and-accumulate operations.
In this work, we aim to overcome the limitations of TTFS-encoded neuromorphic systems.
arXiv Detail & Related papers (2020-06-03T15:55:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.