Analyzing and Reducing the Performance Gap in Cross-Lingual Transfer
with Fine-tuning Slow and Fast
- URL: http://arxiv.org/abs/2305.11449v1
- Date: Fri, 19 May 2023 06:04:21 GMT
- Title: Analyzing and Reducing the Performance Gap in Cross-Lingual Transfer
with Fine-tuning Slow and Fast
- Authors: Yiduo Guo, Yaobo Liang, Dongyan Zhao, Bing Liu, Duan Nan
- Abstract summary: Existing research has shown that a multilingual pre-trained language model fine-tuned with one (source) language also performs well on downstream tasks for non-source languages.
This paper analyzes the fine-tuning process, discovers when the performance gap changes and identifies which network weights affect the overall performance most.
- Score: 50.19681990847589
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Existing research has shown that a multilingual pre-trained language model
fine-tuned with one (source) language also performs well on downstream tasks
for non-source languages, even though no fine-tuning is done on these
languages. However, there is a clear gap between the performance of the source
language and that of the non-source languages. This paper analyzes the
fine-tuning process, discovers when the performance gap changes and identifies
which network weights affect the overall performance most. Additionally, the
paper seeks to answer to what extent the gap can be reduced by reducing
forgetting. Based on the analysis results, a method named Fine-tuning slow and
fast with four training policies is proposed to address these issues.
Experimental results show the proposed method outperforms baselines by a clear
margin.
Related papers
- Multilingual Contrastive Decoding via Language-Agnostic Layers Skipping [60.458273797431836]
Decoding by contrasting layers (DoLa) is designed to improve the generation quality of large language models.
We find that this approach does not work well on non-English tasks.
Inspired by previous interpretability work on language transition during the model's forward pass, we propose an improved contrastive decoding algorithm.
arXiv Detail & Related papers (2024-07-15T15:14:01Z) - No Train but Gain: Language Arithmetic for training-free Language Adapters enhancement [59.37775534633868]
We introduce a novel method called language arithmetic, which enables training-free post-processing.
The effectiveness of the proposed solution is demonstrated on three downstream tasks in a MAD-X-based set of cross-lingual schemes.
arXiv Detail & Related papers (2024-04-24T08:52:40Z) - Is Prompt-Based Finetuning Always Better than Vanilla Finetuning?
Insights from Cross-Lingual Language Understanding [0.30586855806896046]
We propose the ProFiT pipeline to investigate the cross-lingual capabilities of Prompt-based Finetuning.
Our results reveal the effectiveness and versatility of prompt-based finetuning in cross-lingual language understanding.
arXiv Detail & Related papers (2023-07-15T20:33:33Z) - Efficient Entity Candidate Generation for Low-Resource Languages [13.789451365205665]
Candidate generation is a crucial module in entity linking.
It plays a key role in multiple NLP tasks that have been proven to beneficially leverage knowledge bases.
This paper constitutes an in-depth analysis of the candidate generation problem in the context of cross-lingual entity linking.
arXiv Detail & Related papers (2022-06-30T09:49:53Z) - Improving Pre-trained Language Model Fine-tuning with Noise Stability
Regularization [94.4409074435894]
We propose a novel and effective fine-tuning framework, named Layerwise Noise Stability Regularization (LNSR)
Specifically, we propose to inject the standard Gaussian noise and regularize hidden representations of the fine-tuned model.
We demonstrate the advantages of the proposed method over other state-of-the-art algorithms including L2-SP, Mixout and SMART.
arXiv Detail & Related papers (2022-06-12T04:42:49Z) - On the Language Coverage Bias for Neural Machine Translation [81.81456880770762]
Language coverage bias is important for neural machine translation (NMT) because the target-original training data is not well exploited in current practice.
By carefully designing experiments, we provide comprehensive analyses of the language coverage bias in the training data.
We propose two simple and effective approaches to alleviate the language coverage bias problem.
arXiv Detail & Related papers (2021-06-07T01:55:34Z) - Cross-lingual Text Classification with Heterogeneous Graph Neural
Network [2.6936806968297913]
Cross-lingual text classification aims at training a classifier on the source language and transferring the knowledge to target languages.
Recent multilingual pretrained language models (mPLM) achieve impressive results in cross-lingual classification tasks.
We propose a simple yet effective method to incorporate heterogeneous information within and across languages for cross-lingual text classification.
arXiv Detail & Related papers (2021-05-24T12:45:42Z) - On the Importance of Word Order Information in Cross-lingual Sequence
Labeling [80.65425412067464]
Cross-lingual models that fit into the word order of the source language might fail to handle target languages.
We investigate whether making models insensitive to the word order of the source language can improve the adaptation performance in target languages.
arXiv Detail & Related papers (2020-01-30T03:35:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.