Cross-lingual Text Classification with Heterogeneous Graph Neural
Network
- URL: http://arxiv.org/abs/2105.11246v1
- Date: Mon, 24 May 2021 12:45:42 GMT
- Title: Cross-lingual Text Classification with Heterogeneous Graph Neural
Network
- Authors: Ziyun Wang, Xuan Liu, Peiji Yang, Shixing Liu, Zhisheng Wang
- Abstract summary: Cross-lingual text classification aims at training a classifier on the source language and transferring the knowledge to target languages.
Recent multilingual pretrained language models (mPLM) achieve impressive results in cross-lingual classification tasks.
We propose a simple yet effective method to incorporate heterogeneous information within and across languages for cross-lingual text classification.
- Score: 2.6936806968297913
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Cross-lingual text classification aims at training a classifier on the source
language and transferring the knowledge to target languages, which is very
useful for low-resource languages. Recent multilingual pretrained language
models (mPLM) achieve impressive results in cross-lingual classification tasks,
but rarely consider factors beyond semantic similarity, causing performance
degradation between some language pairs. In this paper we propose a simple yet
effective method to incorporate heterogeneous information within and across
languages for cross-lingual text classification using graph convolutional
networks (GCN). In particular, we construct a heterogeneous graph by treating
documents and words as nodes, and linking nodes with different relations, which
include part-of-speech roles, semantic similarity, and document translations.
Extensive experiments show that our graph-based method significantly
outperforms state-of-the-art models on all tasks, and also achieves consistent
performance gain over baselines in low-resource settings where external tools
like translators are unavailable.
Related papers
- Evaluating and explaining training strategies for zero-shot cross-lingual news sentiment analysis [8.770572911942635]
We introduce novel evaluation datasets in several less-resourced languages.
We experiment with a range of approaches including the use of machine translation.
We show that language similarity is not in itself sufficient for predicting the success of cross-lingual transfer.
arXiv Detail & Related papers (2024-09-30T07:59:41Z) - GradSim: Gradient-Based Language Grouping for Effective Multilingual
Training [13.730907708289331]
We propose GradSim, a language grouping method based on gradient similarity.
Our experiments on three diverse multilingual benchmark datasets show that it leads to the largest performance gains.
Besides linguistic features, the topics of the datasets play an important role for language grouping.
arXiv Detail & Related papers (2023-10-23T18:13:37Z) - T3L: Translate-and-Test Transfer Learning for Cross-Lingual Text
Classification [50.675552118811]
Cross-lingual text classification is typically built on large-scale, multilingual language models (LMs) pretrained on a variety of languages of interest.
We propose revisiting the classic "translate-and-test" pipeline to neatly separate the translation and classification stages.
arXiv Detail & Related papers (2023-06-08T07:33:22Z) - Multilingual Extraction and Categorization of Lexical Collocations with
Graph-aware Transformers [86.64972552583941]
We put forward a sequence tagging BERT-based model enhanced with a graph-aware transformer architecture, which we evaluate on the task of collocation recognition in context.
Our results suggest that explicitly encoding syntactic dependencies in the model architecture is helpful, and provide insights on differences in collocation typification in English, Spanish and French.
arXiv Detail & Related papers (2022-05-23T16:47:37Z) - To Augment or Not to Augment? A Comparative Study on Text Augmentation
Techniques for Low-Resource NLP [0.0]
We investigate three categories of text augmentation methodologies which perform changes on the syntax.
We compare them on part-of-speech tagging, dependency parsing and semantic role labeling for a diverse set of language families.
Our results suggest that the augmentation techniques can further improve over strong baselines based on mBERT.
arXiv Detail & Related papers (2021-11-18T10:52:48Z) - Improving Zero-Shot Multi-Lingual Entity Linking [14.502266106371433]
We consider multilingual entity linking, where a single model is trained to link references to same-language knowledge bases in several languages.
We propose a neural ranker architecture, which leverages multilingual transformer representations of text to be easily applied to a multilingual setting.
We find that using this approach improves recall in several datasets, often matching the in-language performance.
arXiv Detail & Related papers (2021-04-16T12:50:07Z) - Unsupervised Domain Adaptation of a Pretrained Cross-Lingual Language
Model [58.27176041092891]
Recent research indicates that pretraining cross-lingual language models on large-scale unlabeled texts yields significant performance improvements.
We propose a novel unsupervised feature decomposition method that can automatically extract domain-specific features from the entangled pretrained cross-lingual representations.
Our proposed model leverages mutual information estimation to decompose the representations computed by a cross-lingual model into domain-invariant and domain-specific parts.
arXiv Detail & Related papers (2020-11-23T16:00:42Z) - Leveraging Adversarial Training in Self-Learning for Cross-Lingual Text
Classification [52.69730591919885]
We present a semi-supervised adversarial training process that minimizes the maximal loss for label-preserving input perturbations.
We observe significant gains in effectiveness on document and intent classification for a diverse set of languages.
arXiv Detail & Related papers (2020-07-29T19:38:35Z) - Bridging Linguistic Typology and Multilingual Machine Translation with
Multi-View Language Representations [83.27475281544868]
We use singular vector canonical correlation analysis to study what kind of information is induced from each source.
We observe that our representations embed typology and strengthen correlations with language relationships.
We then take advantage of our multi-view language vector space for multilingual machine translation, where we achieve competitive overall translation accuracy.
arXiv Detail & Related papers (2020-04-30T16:25:39Z) - On the Importance of Word Order Information in Cross-lingual Sequence
Labeling [80.65425412067464]
Cross-lingual models that fit into the word order of the source language might fail to handle target languages.
We investigate whether making models insensitive to the word order of the source language can improve the adaptation performance in target languages.
arXiv Detail & Related papers (2020-01-30T03:35:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.