PointGPT: Auto-regressively Generative Pre-training from Point Clouds
- URL: http://arxiv.org/abs/2305.11487v2
- Date: Tue, 23 May 2023 02:38:26 GMT
- Title: PointGPT: Auto-regressively Generative Pre-training from Point Clouds
- Authors: Guangyan Chen, Meiling Wang, Yi Yang, Kai Yu, Li Yuan, Yufeng Yue
- Abstract summary: We present PointGPT, a novel approach that extends the concept of GPT to point clouds.
Specifically, a point cloud auto-regressive generation task is proposed to pre-train transformer models.
Our approach achieves classification accuracies of 94.9% on the ModelNet40 dataset and 93.4% on the ScanObjectNN dataset, outperforming all other transformer models.
- Score: 45.488532108226565
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large language models (LLMs) based on the generative pre-training transformer
(GPT) have demonstrated remarkable effectiveness across a diverse range of
downstream tasks. Inspired by the advancements of the GPT, we present PointGPT,
a novel approach that extends the concept of GPT to point clouds, addressing
the challenges associated with disorder properties, low information density,
and task gaps. Specifically, a point cloud auto-regressive generation task is
proposed to pre-train transformer models. Our method partitions the input point
cloud into multiple point patches and arranges them in an ordered sequence
based on their spatial proximity. Then, an extractor-generator based
transformer decoder, with a dual masking strategy, learns latent
representations conditioned on the preceding point patches, aiming to predict
the next one in an auto-regressive manner. Our scalable approach allows for
learning high-capacity models that generalize well, achieving state-of-the-art
performance on various downstream tasks. In particular, our approach achieves
classification accuracies of 94.9% on the ModelNet40 dataset and 93.4% on the
ScanObjectNN dataset, outperforming all other transformer models. Furthermore,
our method also attains new state-of-the-art accuracies on all four few-shot
learning benchmarks.
Related papers
- Point Cloud Pre-training with Diffusion Models [62.12279263217138]
We propose a novel pre-training method called Point cloud Diffusion pre-training (PointDif)
PointDif achieves substantial improvement across various real-world datasets for diverse downstream tasks such as classification, segmentation and detection.
arXiv Detail & Related papers (2023-11-25T08:10:05Z) - General Point Model with Autoencoding and Autoregressive [55.051626723729896]
We propose a General Point Model which seamlessly integrates autoencoding and autoregressive tasks in point cloud transformer.
This model is versatile, allowing fine-tuning for downstream point cloud representation tasks, as well as unconditional and conditional generation tasks.
arXiv Detail & Related papers (2023-10-25T06:08:24Z) - Instance-aware Dynamic Prompt Tuning for Pre-trained Point Cloud Models [64.49254199311137]
We propose a novel Instance-aware Dynamic Prompt Tuning (IDPT) strategy for pre-trained point cloud models.
The essence of IDPT is to develop a dynamic prompt generation module to perceive semantic prior features of each point cloud instance.
In experiments, IDPT outperforms full fine-tuning in most tasks with a mere 7% of the trainable parameters.
arXiv Detail & Related papers (2023-04-14T16:03:09Z) - AdaPoinTr: Diverse Point Cloud Completion with Adaptive Geometry-Aware
Transformers [94.11915008006483]
We present a new method that reformulates point cloud completion as a set-to-set translation problem.
We design a new model, called PoinTr, which adopts a Transformer encoder-decoder architecture for point cloud completion.
Our method attains 6.53 CD on PCN, 0.81 CD on ShapeNet-55 and 0.392 MMD on real-world KITTI.
arXiv Detail & Related papers (2023-01-11T16:14:12Z) - POS-BERT: Point Cloud One-Stage BERT Pre-Training [34.30767607646814]
We propose POS-BERT, a one-stage BERT pre-training method for point clouds.
Unlike Point-BERT, its tokenizer is extra-trained and frozen.
POS-BERT achieves the state-of-the-art classification accuracy, which exceeds Point-BERT by 3.5%.
arXiv Detail & Related papers (2022-04-03T04:49:39Z) - Masked Autoencoders for Point Cloud Self-supervised Learning [27.894216954216716]
We propose a neat scheme of masked autoencoders for point cloud self-supervised learning.
We divide the input point cloud into irregular point patches and randomly mask them at a high ratio.
A standard Transformer based autoencoder, with an asymmetric design and a shifting mask tokens operation, learns high-level latent features from unmasked point patches.
arXiv Detail & Related papers (2022-03-13T09:23:39Z) - Point-BERT: Pre-training 3D Point Cloud Transformers with Masked Point
Modeling [104.82953953453503]
We present Point-BERT, a new paradigm for learning Transformers to generalize the concept of BERT to 3D point cloud.
Experiments demonstrate that the proposed BERT-style pre-training strategy significantly improves the performance of standard point cloud Transformers.
arXiv Detail & Related papers (2021-11-29T18:59:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.