論文の概要: Enriching Disentanglement: Definitions to Metrics
- arxiv url: http://arxiv.org/abs/2305.11512v1
- Date: Fri, 19 May 2023 08:22:23 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-22 15:24:18.588113
- Title: Enriching Disentanglement: Definitions to Metrics
- Title(参考訳): 絡み合いの強化:メトリクスの定義
- Authors: Yivan Zhang, Masashi Sugiyama
- Abstract要約: 分散表現学習は、複雑なデータの変動の複数の要因を分離する難題である。
不整合表現の学習と評価のための様々な指標が提案されているが、これらの指標が真に何を定量化し、どのように比較するかは定かではない。
- 参考スコア(独自算出の注目度): 97.34033555407403
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Disentangled representation learning is a challenging task that involves
separating multiple factors of variation in complex data. Although various
metrics for learning and evaluating disentangled representations have been
proposed, it remains unclear what these metrics truly quantify and how to
compare them. In this work, we study the definitions of disentanglement given
by first-order equational predicates and introduce a systematic approach for
transforming an equational definition into a compatible quantitative metric
based on enriched category theory. Specifically, we show how to replace (i)
equality with metric or divergence, (ii) logical connectives with order
operations, (iii) universal quantifier with aggregation, and (iv) existential
quantifier with the best approximation. Using this approach, we derive metrics
for measuring the desired properties of a disentangled representation extractor
and demonstrate their effectiveness on synthetic data. Our proposed approach
provides practical guidance for researchers in selecting appropriate evaluation
metrics and designing effective learning algorithms for disentangled
representation learning.
- Abstract(参考訳): 分散表現学習は、複雑なデータの変動の複数の要因を分離する難題である。
不整合表現の学習と評価のための様々な指標が提案されているが、これらの指標が真に何を定量化し、どのように比較するかは定かではない。
本研究は,一階方程式述語が与える絡み合いの定義を考察し,等式の定義を富化圏理論に基づく相溶性のある量的計量に変換するための体系的アプローチを提案する。
具体的には どのように置き換えるか
(i)メートル法または分岐法との等式
(ii)順序演算による論理接続
三 集約を伴う普遍的定量化器、及び
(iv)最良の近似を持つ存在量化器。
提案手法は,不整合表現抽出器の所望特性を測定するための指標を導出し,合成データ上での有効性を示す。
提案手法は,適切な評価指標を選定し,不連続表現学習のための効果的な学習アルゴリズムを設計するための実践的ガイダンスを提供する。
関連論文リスト
- Towards an Improved Metric for Evaluating Disentangled Representations [0.6946415403594184]
切り離された表現学習は、表現を制御可能、解釈可能、転送可能にする上で重要な役割を果たす。
領域におけるその重要性にもかかわらず、信頼性と一貫した量的絡み合い計量の探求は依然として大きな課題である。
そこで本稿では, 直感的概念の強調と係数-符号関係の改善を生かしたemphEDIという測度を導入することにより, 絡み合いの定量化のための新しい枠組みを提案する。
論文 参考訳(メタデータ) (2024-10-04T00:32:59Z) - Independence Constrained Disentangled Representation Learning from Epistemological Perspective [13.51102815877287]
Disentangled Representation Learningは、データ生成プロセスにおいて意味論的に意味のある潜伏変数を識別するデータエンコーダをトレーニングすることで、ディープラーニングメソッドの説明可能性を向上させることを目的としている。
不整合表現学習の目的については合意が得られない。
本稿では,相互情報制約と独立性制約を統合した非絡み合い表現学習手法を提案する。
論文 参考訳(メタデータ) (2024-09-04T13:00:59Z) - Nonparametric Partial Disentanglement via Mechanism Sparsity: Sparse
Actions, Interventions and Sparse Temporal Dependencies [58.179981892921056]
この研究は、メカニズムのスパーシティ正則化(英語版)と呼ばれる、アンタングルメントの新たな原理を導入する。
本稿では,潜在要因を同時に学習することで,絡み合いを誘発する表現学習手法を提案する。
学習した因果グラフをスパースに規則化することにより、潜伏因子を復元できることを示す。
論文 参考訳(メタデータ) (2024-01-10T02:38:21Z) - Evaluating the Robustness of Interpretability Methods through
Explanation Invariance and Equivariance [72.50214227616728]
解釈可能性法は、それらの説明が説明されたモデルを忠実に記述した場合にのみ有用である。
特定の対称性群の下で予測が不変であるニューラルネットワークを考える。
論文 参考訳(メタデータ) (2023-04-13T17:59:03Z) - Synergies between Disentanglement and Sparsity: Generalization and
Identifiability in Multi-Task Learning [79.83792914684985]
我々は,最大スパース基底予測器が不整合表現をもたらす条件を提供する新しい識別可能性の結果を証明した。
この理論的な結果から,両レベル最適化問題に基づくアンタングル表現学習の実践的アプローチを提案する。
論文 参考訳(メタデータ) (2022-11-26T21:02:09Z) - Disentanglement Analysis with Partial Information Decomposition [31.56299813238937]
不整合表現は、異なる生成因子を個別にキャプチャする複数のランダム変数にデータをマッピングすることで、プロセスを逆転させることを目的としている。
現在の遠絡測定値は、各生成因子によって条件付けられた各変数の絶対偏差、分散、エントロピーなどの濃度を測定するように設計されている。
本研究では,2つ以上の変数間の情報共有を評価するために部分情報分解フレームワークを使用し,新しいアンタングル化指標を含むフレームワークを構築する。
論文 参考訳(メタデータ) (2021-08-31T11:09:40Z) - Discrete representations in neural models of spoken language [56.29049879393466]
音声言語の弱教師付きモデルの文脈における4つの一般的なメトリクスの利点を比較した。
異なる評価指標が矛盾する結果をもたらすことが分かりました。
論文 参考訳(メタデータ) (2021-05-12T11:02:02Z) - Metrics and continuity in reinforcement learning [34.10996560464196]
メトリクスのレンズを通してトポロジを定義するために統一的な定式化を導入する。
我々はこれらの指標の階層を確立し、マルコフ決定過程にその理論的意味を実証する。
考察した指標間の差異を示す実証的な評価で理論結果を補完する。
論文 参考訳(メタデータ) (2021-02-02T14:30:41Z) - Learning Disentangled Representations with Latent Variation
Predictability [102.4163768995288]
本稿では,潜在不整合表現の変動予測可能性について述べる。
逆生成プロセス内では、潜時変動と対応する画像対の相互情報を最大化することにより、変動予測可能性を高める。
本研究では,潜在表現の絡み合いを測るために,基礎的構造的生成因子に依存しない評価指標を開発する。
論文 参考訳(メタデータ) (2020-07-25T08:54:26Z) - Kendall transformation: a robust representation of continuous data for
information theory [0.0]
ケンドール変換 (Kendall transformation) は、順序付けられた特徴を個々の値間のペアの順序関係のベクトルに変換するものである。
このようにして、観測のランキングを保存し、分類形式で表現する。
情報理論の多くのアプローチは、ケンドール変換された連続データに直接適用することができる。
論文 参考訳(メタデータ) (2020-06-29T12:36:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。