LaCon: Late-Constraint Diffusion for Steerable Guided Image Synthesis
- URL: http://arxiv.org/abs/2305.11520v6
- Date: Sun, 26 May 2024 05:13:36 GMT
- Title: LaCon: Late-Constraint Diffusion for Steerable Guided Image Synthesis
- Authors: Chang Liu, Rui Li, Kaidong Zhang, Xin Luo, Dong Liu,
- Abstract summary: We present an alternative paradigm, namely Late-Constraint Diffusion (LaCon), to simultaneously integrate various conditions into pre-trained diffusion models.
Experimental results on COCO dataset illustrate the effectiveness and superior generalization capability of LaCon.
- Score: 14.217743805048537
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Diffusion models have demonstrated impressive abilities in generating photo-realistic and creative images. To offer more controllability for the generation process, existing studies, termed as early-constraint methods in this paper, leverage extra conditions and incorporate them into pre-trained diffusion models. Particularly, some of them adopt condition-specific modules to handle conditions separately, where they struggle to generalize across other conditions. Although follow-up studies present unified solutions to solve the generalization problem, they also require extra resources to implement, e.g., additional inputs or parameter optimization, where more flexible and efficient solutions are expected to perform steerable guided image synthesis. In this paper, we present an alternative paradigm, namely Late-Constraint Diffusion (LaCon), to simultaneously integrate various conditions into pre-trained diffusion models. Specifically, LaCon establishes an alignment between the external condition and the internal features of diffusion models, and utilizes the alignment to incorporate the target condition, guiding the sampling process to produce tailored results. Experimental results on COCO dataset illustrate the effectiveness and superior generalization capability of LaCon under various conditions and settings. Ablation studies investigate the functionalities of different components in LaCon, and illustrate its great potential to serve as an efficient solution to offer flexible controllability for diffusion models.
Related papers
- Conditional Controllable Image Fusion [56.4120974322286]
conditional controllable fusion (CCF) framework for general image fusion tasks without specific training.
CCF employs specific fusion constraints for each individual in practice.
Experiments validate our effectiveness in general fusion tasks across diverse scenarios.
arXiv Detail & Related papers (2024-11-03T13:56:15Z) - Model-Based Diffusion for Trajectory Optimization [8.943418808959494]
We introduce Model-Based Diffusion (MBD), an optimization approach using the diffusion process to solve trajectory optimization (TO) problems without data.
Although MBD does not require external data, it can be naturally integrated with data of diverse qualities to steer the diffusion process.
MBD outperforms state-of-the-art reinforcement learning and sampling-based TO methods in challenging contact-rich tasks.
arXiv Detail & Related papers (2024-05-28T22:14:25Z) - An Overview of Diffusion Models: Applications, Guided Generation, Statistical Rates and Optimization [59.63880337156392]
Diffusion models have achieved tremendous success in computer vision, audio, reinforcement learning, and computational biology.
Despite the significant empirical success, theory of diffusion models is very limited.
This paper provides a well-rounded theoretical exposure for stimulating forward-looking theories and methods of diffusion models.
arXiv Detail & Related papers (2024-04-11T14:07:25Z) - Unveil Conditional Diffusion Models with Classifier-free Guidance: A Sharp Statistical Theory [87.00653989457834]
Conditional diffusion models serve as the foundation of modern image synthesis and find extensive application in fields like computational biology and reinforcement learning.
Despite the empirical success, theory of conditional diffusion models is largely missing.
This paper bridges the gap by presenting a sharp statistical theory of distribution estimation using conditional diffusion models.
arXiv Detail & Related papers (2024-03-18T17:08:24Z) - Constrained Synthesis with Projected Diffusion Models [47.56192362295252]
This paper introduces an approach to generative diffusion processes the ability to satisfy and certify compliance with constraints and physical principles.
The proposed method recast the traditional process of generative diffusion as a constrained distribution problem to ensure adherence to constraints.
arXiv Detail & Related papers (2024-02-05T22:18:16Z) - Steered Diffusion: A Generalized Framework for Plug-and-Play Conditional
Image Synthesis [62.07413805483241]
Steered Diffusion is a framework for zero-shot conditional image generation using a diffusion model trained for unconditional generation.
We present experiments using steered diffusion on several tasks including inpainting, colorization, text-guided semantic editing, and image super-resolution.
arXiv Detail & Related papers (2023-09-30T02:03:22Z) - Enhanced Controllability of Diffusion Models via Feature Disentanglement and Realism-Enhanced Sampling Methods [27.014858633903867]
We present a training framework for feature disentanglement of Diffusion Models (FDiff)
We propose two sampling methods that can boost the realism of our Diffusion Models and also enhance the controllability.
arXiv Detail & Related papers (2023-02-28T07:43:00Z) - ShiftDDPMs: Exploring Conditional Diffusion Models by Shifting Diffusion
Trajectories [144.03939123870416]
We propose a novel conditional diffusion model by introducing conditions into the forward process.
We use extra latent space to allocate an exclusive diffusion trajectory for each condition based on some shifting rules.
We formulate our method, which we call textbfShiftDDPMs, and provide a unified point of view on existing related methods.
arXiv Detail & Related papers (2023-02-05T12:48:21Z) - Bi-Noising Diffusion: Towards Conditional Diffusion Models with
Generative Restoration Priors [64.24948495708337]
We introduce a new method that brings predicted samples to the training data manifold using a pretrained unconditional diffusion model.
We perform comprehensive experiments to demonstrate the effectiveness of our approach on super-resolution, colorization, turbulence removal, and image-deraining tasks.
arXiv Detail & Related papers (2022-12-14T17:26:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.