Unveil Conditional Diffusion Models with Classifier-free Guidance: A Sharp Statistical Theory
- URL: http://arxiv.org/abs/2403.11968v1
- Date: Mon, 18 Mar 2024 17:08:24 GMT
- Title: Unveil Conditional Diffusion Models with Classifier-free Guidance: A Sharp Statistical Theory
- Authors: Hengyu Fu, Zhuoran Yang, Mengdi Wang, Minshuo Chen,
- Abstract summary: Conditional diffusion models serve as the foundation of modern image synthesis and find extensive application in fields like computational biology and reinforcement learning.
Despite the empirical success, theory of conditional diffusion models is largely missing.
This paper bridges the gap by presenting a sharp statistical theory of distribution estimation using conditional diffusion models.
- Score: 87.00653989457834
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Conditional diffusion models serve as the foundation of modern image synthesis and find extensive application in fields like computational biology and reinforcement learning. In these applications, conditional diffusion models incorporate various conditional information, such as prompt input, to guide the sample generation towards desired properties. Despite the empirical success, theory of conditional diffusion models is largely missing. This paper bridges this gap by presenting a sharp statistical theory of distribution estimation using conditional diffusion models. Our analysis yields a sample complexity bound that adapts to the smoothness of the data distribution and matches the minimax lower bound. The key to our theoretical development lies in an approximation result for the conditional score function, which relies on a novel diffused Taylor approximation technique. Moreover, we demonstrate the utility of our statistical theory in elucidating the performance of conditional diffusion models across diverse applications, including model-based transition kernel estimation in reinforcement learning, solving inverse problems, and reward conditioned sample generation.
Related papers
- An Overview of Diffusion Models: Applications, Guided Generation, Statistical Rates and Optimization [59.63880337156392]
Diffusion models have achieved tremendous success in computer vision, audio, reinforcement learning, and computational biology.
Despite the significant empirical success, theory of diffusion models is very limited.
This paper provides a well-rounded theoretical exposure for stimulating forward-looking theories and methods of diffusion models.
arXiv Detail & Related papers (2024-04-11T14:07:25Z) - Theoretical Insights for Diffusion Guidance: A Case Study for Gaussian
Mixture Models [59.331993845831946]
Diffusion models benefit from instillation of task-specific information into the score function to steer the sample generation towards desired properties.
This paper provides the first theoretical study towards understanding the influence of guidance on diffusion models in the context of Gaussian mixture models.
arXiv Detail & Related papers (2024-03-03T23:15:48Z) - Score-based Generative Modeling Through Backward Stochastic Differential
Equations: Inversion and Generation [6.2255027793924285]
The proposed BSDE-based diffusion model represents a novel approach to diffusion modeling, which extends the application of differential equations (SDEs) in machine learning.
We demonstrate the theoretical guarantees of the model, the benefits of using Lipschitz networks for score matching, and its potential applications in various areas such as diffusion inversion, conditional diffusion, and uncertainty quantification.
arXiv Detail & Related papers (2023-04-26T01:15:35Z) - Diffusion Models are Minimax Optimal Distribution Estimators [49.47503258639454]
We provide the first rigorous analysis on approximation and generalization abilities of diffusion modeling.
We show that when the true density function belongs to the Besov space and the empirical score matching loss is properly minimized, the generated data distribution achieves the nearly minimax optimal estimation rates.
arXiv Detail & Related papers (2023-03-03T11:31:55Z) - Information-Theoretic Diffusion [18.356162596599436]
Denoising diffusion models have spurred significant gains in density modeling and image generation.
We introduce a new mathematical foundation for diffusion models inspired by classic results in information theory.
arXiv Detail & Related papers (2023-02-07T23:03:07Z) - Bi-Noising Diffusion: Towards Conditional Diffusion Models with
Generative Restoration Priors [64.24948495708337]
We introduce a new method that brings predicted samples to the training data manifold using a pretrained unconditional diffusion model.
We perform comprehensive experiments to demonstrate the effectiveness of our approach on super-resolution, colorization, turbulence removal, and image-deraining tasks.
arXiv Detail & Related papers (2022-12-14T17:26:35Z) - How Much is Enough? A Study on Diffusion Times in Score-based Generative
Models [76.76860707897413]
Current best practice advocates for a large T to ensure that the forward dynamics brings the diffusion sufficiently close to a known and simple noise distribution.
We show how an auxiliary model can be used to bridge the gap between the ideal and the simulated forward dynamics, followed by a standard reverse diffusion process.
arXiv Detail & Related papers (2022-06-10T15:09:46Z) - Conditional Image Generation with Score-Based Diffusion Models [1.1470070927586016]
We conduct a systematic comparison and theoretical analysis of different approaches to learning conditional probability distributions with score-based diffusion models.
We prove results which provide a theoretical justification for one of the most successful estimators of the conditional score.
We introduce a multi-speed diffusion framework, which leads to a new estimator for the conditional score, performing on par with previous state-of-the-art approaches.
arXiv Detail & Related papers (2021-11-26T17:10:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.