Generalized quantum geometric tensor for excited states using the path
integral approach
- URL: http://arxiv.org/abs/2305.11525v2
- Date: Tue, 15 Aug 2023 03:06:07 GMT
- Title: Generalized quantum geometric tensor for excited states using the path
integral approach
- Authors: Sergio B. Ju\'arez, Diego Gonzalez, Daniel Guti\'errez-Ruiz and J.
David Vergara
- Abstract summary: The quantum geometric tensor encodes the parameter space geometry of a physical system.
We first provide a formulation of the quantum geometrical tensor in the path integral formalism that can handle both the ground and excited states.
We then generalize the quantum geometric tensor to incorporate variations of the system parameters and the phase-space coordinates.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The quantum geometric tensor, composed of the quantum metric tensor and Berry
curvature, fully encodes the parameter space geometry of a physical system. We
first provide a formulation of the quantum geometrical tensor in the path
integral formalism that can handle both the ground and excited states, making
it useful to characterize excited state quantum phase transitions (ESQPT). In
this setting, we also generalize the quantum geometric tensor to incorporate
variations of the system parameters and the phase-space coordinates. This gives
rise to an alternative approach to the quantum covariance matrix, from which we
can get information about the quantum entanglement of Gaussian states through
tools such as purity and von Neumann entropy. Second, we demonstrate the
equivalence between the formulation of the quantum geometric tensor in the path
integral formalism and other existing methods. Furthermore, we explore the
geometric properties of the generalized quantum metric tensor in depth by
calculating the Ricci tensor and scalar curvature for several quantum systems,
providing insight into this geometric information.
Related papers
- Identifying non-Hermitian critical points with quantum metric [2.465888830794301]
The geometric properties of quantum states are encoded by the quantum geometric tensor.
For conventional Hermitian quantum systems, the quantum metric corresponds to the fidelity susceptibility.
We extend this wisdom to the non-Hermitian systems for revealing non-Hermitian critical points.
arXiv Detail & Related papers (2024-04-24T03:36:10Z) - Gaussian Entanglement Measure: Applications to Multipartite Entanglement
of Graph States and Bosonic Field Theory [50.24983453990065]
An entanglement measure based on the Fubini-Study metric has been recently introduced by Cocchiarella and co-workers.
We present the Gaussian Entanglement Measure (GEM), a generalization of geometric entanglement measure for multimode Gaussian states.
By providing a computable multipartite entanglement measure for systems with a large number of degrees of freedom, we show that our definition can be used to obtain insights into a free bosonic field theory.
arXiv Detail & Related papers (2024-01-31T15:50:50Z) - Action formalism for geometric phases from self-closing quantum
trajectories [55.2480439325792]
We study the geometric phase of a subset of self-closing trajectories induced by a continuous Gaussian measurement of a single qubit system.
We show that the geometric phase of the most likely trajectories undergoes a topological transition for self-closing trajectories as a function of the measurement strength parameter.
arXiv Detail & Related papers (2023-12-22T15:20:02Z) - Quantifying measurement-induced quantum-to-classical crossover using an
open-system entanglement measure [49.1574468325115]
We study the entanglement of a single particle under continuous measurements.
We find that the entanglement at intermediate time scales shows the same qualitative behavior as a function of the measurement strength.
arXiv Detail & Related papers (2023-04-06T09:45:11Z) - Extracting the Quantum Geometric Tensor of an Optical Raman Lattice by
Bloch State Tomography [2.0758589947805572]
In Hilbert space, the geometry of the quantum state is identified by the quantum geometric tensor (QGT)
We propose and experimentally implement a complete Bloch state tomography to measure eigenfunction of an optical Raman lattice for ultracold atoms.
arXiv Detail & Related papers (2023-01-15T13:05:01Z) - Geometric phases along quantum trajectories [58.720142291102135]
We study the distribution function of geometric phases in monitored quantum systems.
For the single trajectory exhibiting no quantum jumps, a topological transition in the phase acquired after a cycle.
For the same parameters, the density matrix does not show any interference.
arXiv Detail & Related papers (2023-01-10T22:05:18Z) - Quantum Information Dimension and Geometric Entropy [0.0]
We introduce two analysis tools, inspired by Renyi's information theory, to characterize and quantify fundamental properties of geometric quantum states.
We recount their classical definitions, information-theoretic meanings, and physical interpretations, and adapt them to quantum systems via the geometric approach.
arXiv Detail & Related papers (2021-11-11T18:40:49Z) - Geometric and holonomic quantum computation [1.4644151041375417]
Quantum gates based on geometric phases and quantum holonomies possess built-in resilience to certain kinds of errors.
This review provides an introduction to the topic as well as gives an overview of the theoretical and experimental progress for constructing geometric and holonomic quantum gates.
arXiv Detail & Related papers (2021-10-07T16:31:54Z) - From geometry to coherent dissipative dynamics in quantum mechanics [68.8204255655161]
We work out the case of finite-level systems, for which it is shown by means of the corresponding contact master equation.
We describe quantum decays in a 2-level system as coherent and continuous processes.
arXiv Detail & Related papers (2021-07-29T18:27:38Z) - Phase space formulation of the Abelian and non-Abelian quantum geometric
tensor [0.0]
We present a formulation of the Berry connection and the quantum geometric tensor.
We show that the quantum metric tensor can be computed using only the Wigner functions.
Our results indicate that the developed approach is well adapted to study the parameter space associated with quantum many-body systems.
arXiv Detail & Related papers (2020-11-29T08:23:46Z) - Hilbert-space geometry of random-matrix eigenstates [55.41644538483948]
We discuss the Hilbert-space geometry of eigenstates of parameter-dependent random-matrix ensembles.
Our results give the exact joint distribution function of the Fubini-Study metric and the Berry curvature.
We compare our results to numerical simulations of random-matrix ensembles as well as electrons in a random magnetic field.
arXiv Detail & Related papers (2020-11-06T19:00:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.