Quantum geometric tensors from sub-bundle geometry
- URL: http://arxiv.org/abs/2503.17163v1
- Date: Fri, 21 Mar 2025 14:08:06 GMT
- Title: Quantum geometric tensors from sub-bundle geometry
- Authors: Marius A. Oancea, Thomas B. Mieling, Giandomenico Palumbo,
- Abstract summary: We use the differential-geometric framework of vector bundles to analyze the properties of parameter-dependent quantum states.<n>We show that the sub-bundle geometry is similar to that of submanifolds in Riemannian geometry and is described by a generalization of the Gauss-Codazzi-Mainardi equations.<n>This leads to a novel definition of the quantum geometric tensor, which contains an additional curvature contribution.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The geometric properties of quantum states are crucial for understanding many physical phenomena in quantum mechanics, condensed matter physics, and optics. The central object describing these properties is the quantum geometric tensor, which unifies the Berry curvature and the quantum metric. In this work, we use the differential-geometric framework of vector bundles to analyze the properties of parameter-dependent quantum states and generalize the quantum geometric tensor to this setting. This construction is based on an arbitrary connection on a Hermitian vector bundle, which defines a notion of quantum state transport in parameter space, and a sub-bundle projector, which constrains the set of accessible quantum states. We show that the sub-bundle geometry is similar to that of submanifolds in Riemannian geometry and is described by a generalization of the Gauss-Codazzi-Mainardi equations. This leads to a novel definition of the quantum geometric tensor, which contains an additional curvature contribution. To illustrate our results, we describe the sub-bundle geometry arising in the semiclassical treatment of Dirac fields propagating in curved spacetime and show how the quantum geometric tensor, with its additional curvature contributions, is obtained in this case. As a concrete example, we consider Dirac fermions confined to a hyperbolic plane and demonstrate how spatial curvature influences the quantum geometry. This work sets the stage for further exploration of quantum systems in curved geometries, with applications in both high-energy physics and condensed matter systems.
Related papers
- Gaussian Entanglement Measure: Applications to Multipartite Entanglement
of Graph States and Bosonic Field Theory [50.24983453990065]
An entanglement measure based on the Fubini-Study metric has been recently introduced by Cocchiarella and co-workers.
We present the Gaussian Entanglement Measure (GEM), a generalization of geometric entanglement measure for multimode Gaussian states.
By providing a computable multipartite entanglement measure for systems with a large number of degrees of freedom, we show that our definition can be used to obtain insights into a free bosonic field theory.
arXiv Detail & Related papers (2024-01-31T15:50:50Z) - Fluctuations, uncertainty relations, and the geometry of quantum state
manifolds [0.0]
The complete quantum metric of a parametrized quantum system has a real part and a symplectic imaginary part.
We show that for a mixed quantum-classical system both real and imaginary parts of the quantum metric contribute to the dynamics.
arXiv Detail & Related papers (2023-09-07T10:31:59Z) - Matter relative to quantum hypersurfaces [44.99833362998488]
We extend the Page-Wootters formalism to quantum field theory.
By treating hypersurfaces as quantum reference frames, we extend quantum frame transformations to changes between classical and nonclassical hypersurfaces.
arXiv Detail & Related papers (2023-08-24T16:39:00Z) - Generalized quantum geometric tensor for excited states using the path
integral approach [0.0]
The quantum geometric tensor encodes the parameter space geometry of a physical system.
We first provide a formulation of the quantum geometrical tensor in the path integral formalism that can handle both the ground and excited states.
We then generalize the quantum geometric tensor to incorporate variations of the system parameters and the phase-space coordinates.
arXiv Detail & Related papers (2023-05-19T08:50:46Z) - Extracting the Quantum Geometric Tensor of an Optical Raman Lattice by
Bloch State Tomography [2.0758589947805572]
In Hilbert space, the geometry of the quantum state is identified by the quantum geometric tensor (QGT)
We propose and experimentally implement a complete Bloch state tomography to measure eigenfunction of an optical Raman lattice for ultracold atoms.
arXiv Detail & Related papers (2023-01-15T13:05:01Z) - Geometric phases along quantum trajectories [58.720142291102135]
We study the distribution function of geometric phases in monitored quantum systems.
For the single trajectory exhibiting no quantum jumps, a topological transition in the phase acquired after a cycle.
For the same parameters, the density matrix does not show any interference.
arXiv Detail & Related papers (2023-01-10T22:05:18Z) - Relating the topology of Dirac Hamiltonians to quantum geometry: When
the quantum metric dictates Chern numbers and winding numbers [0.0]
We establish relations between the quantum metric and the topological invariants of generic Dirac Hamiltonians.
We show that topological indices are bounded by the quantum volume determined by the quantum metric.
This work suggests unexplored topological responses and metrological applications in a broad class of quantum-engineered systems.
arXiv Detail & Related papers (2021-06-01T21:10:48Z) - Phase space formulation of the Abelian and non-Abelian quantum geometric
tensor [0.0]
We present a formulation of the Berry connection and the quantum geometric tensor.
We show that the quantum metric tensor can be computed using only the Wigner functions.
Our results indicate that the developed approach is well adapted to study the parameter space associated with quantum many-body systems.
arXiv Detail & Related papers (2020-11-29T08:23:46Z) - Quantum particle across Grushin singularity [77.34726150561087]
We study the phenomenon of transmission across the singularity that separates the two half-cylinders.
All the local realisations of the free (Laplace-Beltrami) quantum Hamiltonian are examined as non-equivalent protocols of transmission/reflection.
This allows to comprehend the distinguished status of the so-called bridging' transmission protocol previously identified in the literature.
arXiv Detail & Related papers (2020-11-27T12:53:23Z) - Hilbert-space geometry of random-matrix eigenstates [55.41644538483948]
We discuss the Hilbert-space geometry of eigenstates of parameter-dependent random-matrix ensembles.
Our results give the exact joint distribution function of the Fubini-Study metric and the Berry curvature.
We compare our results to numerical simulations of random-matrix ensembles as well as electrons in a random magnetic field.
arXiv Detail & Related papers (2020-11-06T19:00:07Z) - Probing chiral edge dynamics and bulk topology of a synthetic Hall
system [52.77024349608834]
Quantum Hall systems are characterized by the quantization of the Hall conductance -- a bulk property rooted in the topological structure of the underlying quantum states.
Here, we realize a quantum Hall system using ultracold dysprosium atoms, in a two-dimensional geometry formed by one spatial dimension.
We demonstrate that the large number of magnetic sublevels leads to distinct bulk and edge behaviors.
arXiv Detail & Related papers (2020-01-06T16:59:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.