論文の概要: Empower Large Language Model to Perform Better on Industrial
Domain-Specific Question Answering
- arxiv url: http://arxiv.org/abs/2305.11541v3
- Date: Mon, 16 Oct 2023 10:48:00 GMT
- ステータス: 翻訳完了
- システム内更新日: 2023-10-17 23:16:23.879379
- Title: Empower Large Language Model to Perform Better on Industrial
Domain-Specific Question Answering
- Title(参考訳): 大規模言語モデルによる産業ドメイン固有の質問応答の性能向上
- Authors: Fangkai Yang, Pu Zhao, Zezhong Wang, Lu Wang, Jue Zhang, Mohit Garg,
Qingwei Lin, Saravan Rajmohan, Dongmei Zhang
- Abstract要約: 大規模言語モデル(LLM)は、オープンドメインタスクにおいて大きな成果を上げている。
しかし、実際の産業ドメイン固有のシナリオにおけるパフォーマンスは、特定のドメイン知識が欠如しているため平均的です。
私たちは、Microsoft製品と顧客が遭遇するIT技術的な問題を中心にした、MSQA(QA)データセットのベンチマークを提供します。
- 参考スコア(独自算出の注目度): 36.31193273252256
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large Language Model (LLM) has gained popularity and achieved remarkable
results in open-domain tasks, but its performance in real industrial
domain-specific scenarios is average due to its lack of specific domain
knowledge. This issue has attracted widespread attention, but there are few
relevant benchmarks available. In this paper, we provide a benchmark Question
Answering (QA) dataset named MSQA, centered around Microsoft products and IT
technical problems encountered by customers. This dataset contains industry
cloud-specific QA knowledge, an area not extensively covered in general LLMs,
making it well-suited for evaluating methods aiming to enhance LLMs'
domain-specific capabilities. In addition, we propose a new model interaction
paradigm that can empower LLM to achieve better performance on domain-specific
tasks where it is not proficient. Extensive experiments demonstrate that the
approach following our method outperforms the commonly used LLM with retrieval
methods. We make our source code and sample data available at:
https://aka.ms/Microsoft_QA.
- Abstract(参考訳): 大規模言語モデル(LLM)は、オープンドメインタスクにおいて顕著な成果を上げてきたが、実際の産業ドメイン固有のシナリオにおけるパフォーマンスは、特定のドメイン知識が欠如していることから平均的である。
この問題は広く注目を集めているが、関連するベンチマークはほとんどない。
本稿では、Microsoft製品を中心にMSQA(QA)データセットのベンチマークを行い、顧客が遭遇するIT技術問題について述べる。
このデータセットには業界クラウド固有のqa知識が含まれており、一般的なllmで広くカバーされていない領域であり、llmsのドメイン特化能力を高めるための評価方法に適している。
さらに,LLMが熟練していない領域固有のタスクにおいて,より優れたパフォーマンスを実現するための新しいモデル相互作用パラダイムを提案する。
広範な実験により,本手法のアプローチが検索法でよく用いられるllmよりも優れていることが証明された。
ソースコードとサンプルデータを、https://aka.ms/Microsoft_QA.comで公開しています。
関連論文リスト
- Leveraging Domain Knowledge at Inference Time for LLM Translation: Retrieval versus Generation [36.41708236431343]
機械翻訳(MT)において,大規模言語モデル (LLM) がますます採用されている。
本研究は,LLMを用いたドメイン適応MTについて,慎重なプロンプト設定により検討する。
実演は用語学を一貫して上回り、検索は生成を一貫して上回ります。
論文 参考訳(メタデータ) (2025-03-06T22:23:07Z) - Injecting Domain-Specific Knowledge into Large Language Models: A Comprehensive Survey [39.82566660592583]
大規模言語モデル(LLM)は、自然言語理解、テキスト要約、機械翻訳といった様々なタスクにおいて顕著な成功を収めている。
彼らの汎用的な性質は、医療、化学、法的な分析といった専門的な知識を必要とするドメイン固有のアプリケーションにおいて、その効果を制限していることが多い。
これを解決するために、研究者はドメイン固有の知識を統合することでLLMを強化する様々な方法を模索してきた。
論文 参考訳(メタデータ) (2025-02-15T07:43:43Z) - Leveraging Online Olympiad-Level Math Problems for LLMs Training and Contamination-Resistant Evaluation [55.21013307734612]
AoPS-Instructは60,000以上の高品質QAペアのデータセットである。
LiveAoPSBenchは、最新のフォーラムデータから派生したタイムスタンプによる進化的評価セットである。
我々の研究は、高度な数学推論のための大規模で高品質なデータセットの作成と維持にスケーラブルなアプローチを提示している。
論文 参考訳(メタデータ) (2025-01-24T06:39:38Z) - Top General Performance = Top Domain Performance? DomainCodeBench: A Multi-domain Code Generation Benchmark [38.14474956762422]
DomainCodeBenchは、12のソフトウェアアプリケーションドメインと15のプログラミング言語にわたる大規模言語モデル(LLM)を評価するために設計されたベンチマークである。
トップ・ジェネラル・ドメイン・モデルは特定のアプリケーション・ドメインで一貫して排他的でないことが分かりました。
ドメイン固有の知識による拡張プロンプトは、パフォーマンスを約38.17%向上させる。
論文 参考訳(メタデータ) (2024-12-24T17:56:08Z) - Exploring Language Model Generalization in Low-Resource Extractive QA [57.14068405860034]
ドメインドリフト下でのLarge Language Models (LLM) を用いた抽出質問応答(EQA)について検討する。
パフォーマンスギャップを実証的に説明するための一連の実験を考案する。
論文 参考訳(メタデータ) (2024-09-27T05:06:43Z) - DOMAINEVAL: An Auto-Constructed Benchmark for Multi-Domain Code Generation [48.11754113512047]
この研究には、コード生成ベンチマークデータセットであるDOMAINEVALが含まれており、6つの人気のあるドメインを含んでいる。
私たちのパイプラインは完全に自動化され、コードリポジトリから研究対象のフォーマットへのプッシュボットの構築が可能になります。
本研究のコントリビューションには、コード生成ベンチマークデータセットであるDOMAINEVAL、コードベンチマークを構築するための完全自動化パイプライン、DOMAINEVALのパフォーマンスに基づいたコード生成タスクにおけるLLMの制限の識別が含まれている。
論文 参考訳(メタデータ) (2024-08-23T16:33:58Z) - Federated Domain-Specific Knowledge Transfer on Large Language Models Using Synthetic Data [53.70870879858533]
フェデレートされたドメイン固有の知識伝達フレームワークを紹介する。
クライアントのデータプライバシを保護しながら、LLMからSLMへのドメイン固有の知識転送を可能にする。
提案されたFDKTフレームワークは、プライバシー予算が10未満のSLMのタスクパフォーマンスを約5%改善する。
論文 参考訳(メタデータ) (2024-05-23T06:14:35Z) - BLADE: Enhancing Black-box Large Language Models with Small Domain-Specific Models [56.89958793648104]
大規模言語モデル(LLM)は多用途であり、多様なタスクに対処することができる。
従来のアプローチでは、ドメイン固有のデータによる継続的な事前トレーニングを行うか、一般的なLLMをサポートするために検索拡張を採用する。
BLADEと呼ばれる新しいフレームワークを提案する。このフレームワークは、小さなDomain-spEcificモデルでブラックボックスのLArge言語モデルを拡張する。
論文 参考訳(メタデータ) (2024-03-27T08:57:21Z) - LLM Inference Unveiled: Survey and Roofline Model Insights [62.92811060490876]
大規模言語モデル(LLM)推論は急速に進化しており、機会と課題のユニークなブレンドを提示している。
本調査は, 研究状況を要約するだけでなく, 屋上モデルに基づく枠組みを導入することによって, 従来の文献レビューから際立っている。
このフレームワークは、ハードウェアデバイスにLSMをデプロイする際のボトルネックを特定し、実用上の問題を明確に理解する。
論文 参考訳(メタデータ) (2024-02-26T07:33:05Z) - PANDA: Preference Adaptation for Enhancing Domain-Specific Abilities of LLMs [49.32067576992511]
大規模言語モデルは、しばしばドメイン固有の最先端モデルによって達成されるパフォーマンスに欠ける。
LLMのドメイン固有の機能を強化する1つの潜在的アプローチは、対応するデータセットを使用してそれらを微調整することである。
LLM(PANDA)のドメイン固有能力を高めるための優先度適応法を提案する。
実験の結果,PANDA はテキスト分類や対話型意思決定タスクにおいて LLM のドメイン固有性を大幅に向上させることがわかった。
論文 参考訳(メタデータ) (2024-02-20T09:02:55Z) - Domain Specialization as the Key to Make Large Language Models Disruptive: A Comprehensive Survey [100.24095818099522]
大規模言語モデル(LLM)は自然言語処理(NLP)の分野を著しく進歩させた。
広範囲のアプリケーションに対して、非常に有用でタスクに依存しない基盤を提供する。
しかし、特定の領域における洗練された問題を解決するために直接LLMを適用することは、多くのハードルを満たす。
論文 参考訳(メタデータ) (2023-05-30T03:00:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。