Constructing Word-Context-Coupled Space Aligned with Associative
Knowledge Relations for Interpretable Language Modeling
- URL: http://arxiv.org/abs/2305.11543v2
- Date: Tue, 27 Jun 2023 15:45:46 GMT
- Title: Constructing Word-Context-Coupled Space Aligned with Associative
Knowledge Relations for Interpretable Language Modeling
- Authors: Fanyu Wang and Zhenping Xie
- Abstract summary: The black-box structure of the deep neural network in pre-trained language models seriously limits the interpretability of the language modeling process.
A Word-Context-Coupled Space (W2CSpace) is proposed by introducing the alignment processing between uninterpretable neural representation and interpretable statistical logic.
Our language model can achieve better performance and highly credible interpretable ability compared to related state-of-the-art methods.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: As the foundation of current natural language processing methods, pre-trained
language model has achieved excellent performance. However, the black-box
structure of the deep neural network in pre-trained language models seriously
limits the interpretability of the language modeling process. After revisiting
the coupled requirement of deep neural representation and semantics logic of
language modeling, a Word-Context-Coupled Space (W2CSpace) is proposed by
introducing the alignment processing between uninterpretable neural
representation and interpretable statistical logic. Moreover, a clustering
process is also designed to connect the word- and context-level semantics.
Specifically, an associative knowledge network (AKN), considered interpretable
statistical logic, is introduced in the alignment process for word-level
semantics. Furthermore, the context-relative distance is employed as the
semantic feature for the downstream classifier, which is greatly different from
the current uninterpretable semantic representations of pre-trained models. Our
experiments for performance evaluation and interpretable analysis are executed
on several types of datasets, including SIGHAN, Weibo, and ChnSenti. Wherein a
novel evaluation strategy for the interpretability of machine learning models
is first proposed. According to the experimental results, our language model
can achieve better performance and highly credible interpretable ability
compared to related state-of-the-art methods.
Related papers
- Distilling Monolingual and Crosslingual Word-in-Context Representations [18.87665111304974]
We propose a method that distils representations of word meaning in context from a pre-trained language model in both monolingual and crosslingual settings.
Our method does not require human-annotated corpora nor updates of the parameters of the pre-trained model.
Our method learns to combine the outputs of different hidden layers of the pre-trained model using self-attention.
arXiv Detail & Related papers (2024-09-13T11:10:16Z) - On Robustness of Prompt-based Semantic Parsing with Large Pre-trained
Language Model: An Empirical Study on Codex [48.588772371355816]
This paper presents the first empirical study on the adversarial robustness of a large prompt-based language model of code, codex.
Our results demonstrate that the state-of-the-art (SOTA) code-language models are vulnerable to carefully crafted adversarial examples.
arXiv Detail & Related papers (2023-01-30T13:21:00Z) - Learning Semantic Textual Similarity via Topic-informed Discrete Latent
Variables [17.57873577962635]
We develop a topic-informed discrete latent variable model for semantic textual similarity.
Our model learns a shared latent space for sentence-pair representation via vector quantization.
We show that our model is able to surpass several strong neural baselines in semantic textual similarity tasks.
arXiv Detail & Related papers (2022-11-07T15:09:58Z) - Learning Disentangled Representations for Natural Language Definitions [0.0]
We argue that recurrent syntactic and semantic regularities in textual data can be used to provide the models with both structural biases and generative factors.
We leverage the semantic structures present in a representative and semantically dense category of sentence types, definitional sentences, for training a Variational Autoencoder to learn disentangled representations.
arXiv Detail & Related papers (2022-09-22T14:31:55Z) - A Unified Understanding of Deep NLP Models for Text Classification [88.35418976241057]
We have developed a visual analysis tool, DeepNLPVis, to enable a unified understanding of NLP models for text classification.
The key idea is a mutual information-based measure, which provides quantitative explanations on how each layer of a model maintains the information of input words in a sample.
A multi-level visualization, which consists of a corpus-level, a sample-level, and a word-level visualization, supports the analysis from the overall training set to individual samples.
arXiv Detail & Related papers (2022-06-19T08:55:07Z) - Hierarchical Interpretation of Neural Text Classification [31.95426448656938]
This paper proposes a novel Hierarchical INTerpretable neural text classifier, called Hint, which can automatically generate explanations of model predictions.
Experimental results on both review datasets and news datasets show that our proposed approach achieves text classification results on par with existing state-of-the-art text classifiers.
arXiv Detail & Related papers (2022-02-20T11:15:03Z) - Discrete representations in neural models of spoken language [56.29049879393466]
We compare the merits of four commonly used metrics in the context of weakly supervised models of spoken language.
We find that the different evaluation metrics can give inconsistent results.
arXiv Detail & Related papers (2021-05-12T11:02:02Z) - Infusing Finetuning with Semantic Dependencies [62.37697048781823]
We show that, unlike syntax, semantics is not brought to the surface by today's pretrained models.
We then use convolutional graph encoders to explicitly incorporate semantic parses into task-specific finetuning.
arXiv Detail & Related papers (2020-12-10T01:27:24Z) - SLM: Learning a Discourse Language Representation with Sentence
Unshuffling [53.42814722621715]
We introduce Sentence-level Language Modeling, a new pre-training objective for learning a discourse language representation.
We show that this feature of our model improves the performance of the original BERT by large margins.
arXiv Detail & Related papers (2020-10-30T13:33:41Z) - How Far are We from Effective Context Modeling? An Exploratory Study on
Semantic Parsing in Context [59.13515950353125]
We present a grammar-based decoding semantic parsing and adapt typical context modeling methods on top of it.
We evaluate 13 context modeling methods on two large cross-domain datasets, and our best model achieves state-of-the-art performances.
arXiv Detail & Related papers (2020-02-03T11:28:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.