Learning Disentangled Representations for Natural Language Definitions
- URL: http://arxiv.org/abs/2210.02898v1
- Date: Thu, 22 Sep 2022 14:31:55 GMT
- Title: Learning Disentangled Representations for Natural Language Definitions
- Authors: Danilo S. Carvalho (1), Giangiacomo Mercatali (1), Yingji Zhang (1),
Andre Freitas (1 and 2) ((1) Department of Computer Science, University of
Manchester, United Kingdom, (2) Idiap Research Institute, Switzerland)
- Abstract summary: We argue that recurrent syntactic and semantic regularities in textual data can be used to provide the models with both structural biases and generative factors.
We leverage the semantic structures present in a representative and semantically dense category of sentence types, definitional sentences, for training a Variational Autoencoder to learn disentangled representations.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Disentangling the encodings of neural models is a fundamental aspect for
improving interpretability, semantic control and downstream task performance in
Natural Language Processing. Currently, most disentanglement methods are
unsupervised or rely on synthetic datasets with known generative factors. We
argue that recurrent syntactic and semantic regularities in textual data can be
used to provide the models with both structural biases and generative factors.
We leverage the semantic structures present in a representative and
semantically dense category of sentence types, definitional sentences, for
training a Variational Autoencoder to learn disentangled representations. Our
experimental results show that the proposed model outperforms unsupervised
baselines on several qualitative and quantitative benchmarks for
disentanglement, and it also improves the results in the downstream task of
definition modeling.
Related papers
- How Well Do Text Embedding Models Understand Syntax? [50.440590035493074]
The ability of text embedding models to generalize across a wide range of syntactic contexts remains under-explored.
Our findings reveal that existing text embedding models have not sufficiently addressed these syntactic understanding challenges.
We propose strategies to augment the generalization ability of text embedding models in diverse syntactic scenarios.
arXiv Detail & Related papers (2023-11-14T08:51:00Z) - Flow Factorized Representation Learning [109.51947536586677]
We introduce a generative model which specifies a distinct set of latent probability paths that define different input transformations.
We show that our model achieves higher likelihoods on standard representation learning benchmarks while simultaneously being closer to approximately equivariant models.
arXiv Detail & Related papers (2023-09-22T20:15:37Z) - Constructing Word-Context-Coupled Space Aligned with Associative
Knowledge Relations for Interpretable Language Modeling [0.0]
The black-box structure of the deep neural network in pre-trained language models seriously limits the interpretability of the language modeling process.
A Word-Context-Coupled Space (W2CSpace) is proposed by introducing the alignment processing between uninterpretable neural representation and interpretable statistical logic.
Our language model can achieve better performance and highly credible interpretable ability compared to related state-of-the-art methods.
arXiv Detail & Related papers (2023-05-19T09:26:02Z) - Model Criticism for Long-Form Text Generation [113.13900836015122]
We apply a statistical tool, model criticism in latent space, to evaluate the high-level structure of generated text.
We perform experiments on three representative aspects of high-level discourse -- coherence, coreference, and topicality.
We find that transformer-based language models are able to capture topical structures but have a harder time maintaining structural coherence or modeling coreference.
arXiv Detail & Related papers (2022-10-16T04:35:58Z) - Testing Pre-trained Language Models' Understanding of Distributivity via
Causal Mediation Analysis [13.07356367140208]
We introduce DistNLI, a new diagnostic dataset for natural language inference.
We find that the extent of models' understanding is associated with model size and vocabulary size.
arXiv Detail & Related papers (2022-09-11T00:33:28Z) - Hierarchical Interpretation of Neural Text Classification [31.95426448656938]
This paper proposes a novel Hierarchical INTerpretable neural text classifier, called Hint, which can automatically generate explanations of model predictions.
Experimental results on both review datasets and news datasets show that our proposed approach achieves text classification results on par with existing state-of-the-art text classifiers.
arXiv Detail & Related papers (2022-02-20T11:15:03Z) - Oracle Linguistic Graphs Complement a Pretrained Transformer Language
Model: A Cross-formalism Comparison [13.31232311913236]
We examine the extent to which, in principle, linguistic graph representations can complement and improve neural language modeling.
We find that, overall, semantic constituency structures are most useful to language modeling performance.
arXiv Detail & Related papers (2021-12-15T04:29:02Z) - Disentangling Generative Factors in Natural Language with Discrete
Variational Autoencoders [0.0]
We argue that continuous variables may not be ideal to model features of textual data, due to the fact that most generative factors in text are discrete.
We propose a Variational Autoencoder based method which models language features as discrete variables and encourages independence between variables for learning disentangled representations.
arXiv Detail & Related papers (2021-09-15T09:10:05Z) - A comprehensive comparative evaluation and analysis of Distributional
Semantic Models [61.41800660636555]
We perform a comprehensive evaluation of type distributional vectors, either produced by static DSMs or obtained by averaging the contextualized vectors generated by BERT.
The results show that the alleged superiority of predict based models is more apparent than real, and surely not ubiquitous.
We borrow from cognitive neuroscience the methodology of Representational Similarity Analysis (RSA) to inspect the semantic spaces generated by distributional models.
arXiv Detail & Related papers (2021-05-20T15:18:06Z) - Infusing Finetuning with Semantic Dependencies [62.37697048781823]
We show that, unlike syntax, semantics is not brought to the surface by today's pretrained models.
We then use convolutional graph encoders to explicitly incorporate semantic parses into task-specific finetuning.
arXiv Detail & Related papers (2020-12-10T01:27:24Z) - Improving the Reconstruction of Disentangled Representation Learners via Multi-Stage Modeling [54.94763543386523]
Current autoencoder-based disentangled representation learning methods achieve disentanglement by penalizing the ( aggregate) posterior to encourage statistical independence of the latent factors.
We present a novel multi-stage modeling approach where the disentangled factors are first learned using a penalty-based disentangled representation learning method.
Then, the low-quality reconstruction is improved with another deep generative model that is trained to model the missing correlated latent variables.
arXiv Detail & Related papers (2020-10-25T18:51:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.