論文の概要: Language-universal phonetic encoder for low-resource speech recognition
- arxiv url: http://arxiv.org/abs/2305.11576v1
- Date: Fri, 19 May 2023 10:24:30 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-22 14:55:56.270741
- Title: Language-universal phonetic encoder for low-resource speech recognition
- Title(参考訳): 低リソース音声認識のための言語共通音声エンコーダ
- Authors: Siyuan Feng, Ming Tu, Rui Xia, Chuanzeng Huang, Yuxuan Wang
- Abstract要約: 我々は、低リソースのASR性能を改善するために、International Phonetic Alphabet (IPA) ベースの言語ユニバーサル音声モデルを活用する。
我々のアプローチと適応は、ドメインや言語ミスマッチしたシナリオであっても、極端に低リソースな言語に有効です。
- 参考スコア(独自算出の注目度): 28.21805271848413
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multilingual training is effective in improving low-resource ASR, which may
partially be explained by phonetic representation sharing between languages. In
end-to-end (E2E) ASR systems, graphemes are often used as basic modeling units,
however graphemes may not be ideal for multilingual phonetic sharing. In this
paper, we leverage International Phonetic Alphabet (IPA) based
language-universal phonetic model to improve low-resource ASR performances, for
the first time within the attention encoder-decoder architecture. We propose an
adaptation method on the phonetic IPA model to further improve the proposed
approach on extreme low-resource languages. Experiments carried out on the
open-source MLS corpus and our internal databases show our approach outperforms
baseline monolingual models and most state-of-the-art works. Our main approach
and adaptation are effective on extremely low-resource languages, even within
domain- and language-mismatched scenarios.
- Abstract(参考訳): 多言語訓練は、言語間の音声表現共有によって部分的に説明できる低リソースasrを改善するのに有効である。
エンドツーエンド(E2E)のASRシステムでは、グラテムはしばしば基本的なモデリング単位として使用されるが、グラテムは多言語音声の共有には適していない。
本稿では,IPA(International Phonetic Alphabet)に基づく言語ユニバーサル音声モデルを用いて,アテンションエンコーダ・デコーダアーキテクチャにおいて,低リソースASR性能を初めて向上する。
極低リソース言語に対する提案手法をさらに改善するために,音素IPAモデルへの適応手法を提案する。
オープンソースのMLSコーパスと内部データベースで行った実験では,ベースライン単言語モデルや最先端の作業よりも優れた結果が得られた。
私たちの主なアプローチと適応は、ドメインや言語ミスマッチしたシナリオであっても、極端に低リソースな言語で有効です。
関連論文リスト
- Improving Speech Emotion Recognition in Under-Resourced Languages via Speech-to-Speech Translation with Bootstrapping Data Selection [49.27067541740956]
音声感情認識(SER)は、人間とコンピュータの自然な相互作用が可能な汎用AIエージェントを開発する上で重要な要素である。
英語や中国語以外の言語でラベル付きデータが不足しているため、堅牢な多言語SERシステムの構築は依然として困難である。
本稿では,低SERリソース言語におけるSERの性能向上のための手法を提案する。
論文 参考訳(メタデータ) (2024-09-17T08:36:45Z) - Meta-Whisper: Speech-Based Meta-ICL for ASR on Low-Resource Languages [51.12146889808824]
Meta-Whisperは、低リソース言語の自動音声認識を改善するための新しいアプローチである。
これにより、Whisperは、広範囲の微調整をすることなく、馴染みのない言語で音声を認識できる能力を高める。
論文 参考訳(メタデータ) (2024-09-16T16:04:16Z) - Enabling ASR for Low-Resource Languages: A Comprehensive Dataset Creation Approach [0.6445605125467574]
本研究では,オーディオブックからASRトレーニングデータセットを生成するための新しいパイプラインを提案する。
これらのオーディオブックの共通構造は、音声セグメントの幅が広いため、ユニークな課題である。
本稿では,音声を対応するテキストと効果的に整合させ,それをASR訓練に適した長さに分割する手法を提案する。
論文 参考訳(メタデータ) (2024-06-03T15:38:40Z) - On decoder-only architecture for speech-to-text and large language model
integration [59.49886892602309]
Speech-LLaMAは、音声情報をテキストベースの大規模言語モデルに効果的に組み込む新しいアプローチである。
我々は多言語音声からテキストへの翻訳タスクの実験を行い、強いベースラインよりも大幅に改善されたことを示す。
論文 参考訳(メタデータ) (2023-07-08T06:47:58Z) - Learning Cross-lingual Mappings for Data Augmentation to Improve
Low-Resource Speech Recognition [31.575930914290762]
言語間リソースの爆発は、低リソース言語のデータの不足を補う効果的な方法である。
エンドツーエンド音声認識のための学習可能な言語間マッピングの概念を拡張した。
その結果,任意のソース言語 ASR モデルを用いて,低リソースターゲット言語認識を行うことが可能であることが示唆された。
論文 参考訳(メタデータ) (2023-06-14T15:24:31Z) - Efficient Spoken Language Recognition via Multilabel Classification [53.662747523872305]
我々のモデルは,現在の最先端手法よりも桁違いに小さく,高速でありながら,競争力のある結果が得られることを示す。
我々のマルチラベル戦略は、マルチクラス分類よりも非ターゲット言語の方が堅牢である。
論文 参考訳(メタデータ) (2023-06-02T23:04:19Z) - Learning ASR pathways: A sparse multilingual ASR model [31.147484652643282]
ASR経路は、言語固有のサブネットワーク(パス)を活性化するスパース多言語ASRモデルである。
重なり合うサブネットワークにより、共有パラメータは、共同でマルチリンガルトレーニングをすることで、低リソース言語への知識伝達を可能にする。
提案したASR経路は,高密度モデルと言語に依存しないプルーニングモデルの両方より優れ,低リソース言語の性能向上を実現している。
論文 参考訳(メタデータ) (2022-09-13T05:14:08Z) - Adaptive Activation Network For Low Resource Multilingual Speech
Recognition [30.460501537763736]
ASRモデルの上位層に適応的アクティベーションネットワークを導入する。
また,(1)クロス言語学習,(2)アクティベーション関数をソース言語からターゲット言語に置き換える,(2)多言語学習という2つの手法を提案する。
IARPA Babelデータセットに関する実験により、我々のアプローチは、オフスクラッチトレーニングや従来のボトルネック機能に基づく手法よりも優れていることを示した。
論文 参考訳(メタデータ) (2022-05-28T04:02:59Z) - How Phonotactics Affect Multilingual and Zero-shot ASR Performance [74.70048598292583]
Transformer encoder-decoderモデルは、トレーニング中に提示された言語のIPA転写において、多言語データをうまく活用することが示されている。
我々は,エンコーダデコーダをAMとLMを分離したハイブリッドASRシステムに置き換える。
交叉音韻律のモデル化による利得は限定的であり,強すぎるモデルがゼロショット転送を損なう可能性があることを示す。
論文 参考訳(メタデータ) (2020-10-22T23:07:24Z) - That Sounds Familiar: an Analysis of Phonetic Representations Transfer
Across Languages [72.9927937955371]
我々は、他言語に存在するリソースを用いて、多言語自動音声認識モデルを訓練する。
我々は,多言語設定における全言語間での大幅な改善と,多言語設定におけるスターク劣化を観察した。
分析の結果、ひとつの言語に固有の電話でさえ、他の言語からのトレーニングデータを追加することで大きなメリットがあることがわかった。
論文 参考訳(メタデータ) (2020-05-16T22:28:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。