論文の概要: A Unified Framework for Integrating Semantic Communication and
AI-Generated Content in Metaverse
- arxiv url: http://arxiv.org/abs/2305.11911v2
- Date: Sun, 23 Jul 2023 04:18:49 GMT
- ステータス: 処理完了
- システム内更新日: 2023-07-25 21:16:44.706266
- Title: A Unified Framework for Integrating Semantic Communication and
AI-Generated Content in Metaverse
- Title(参考訳): メタバースにおける意味コミュニケーションとAI生成コンテンツの統合フレームワーク
- Authors: Yijing Lin, Zhipeng Gao, Hongyang Du, Dusit Niyato, Jiawen Kang, Abbas
Jamalipour, Xuemin Sherman Shen
- Abstract要約: 統合セマンティックコミュニケーションとAI生成コンテンツ(ISGC)は近年多くの注目を集めている。
ISGCはユーザ入力から意味情報を転送し、デジタルコンテンツを生成し、Metaverse用のグラフィックをレンダリングする。
最適化されたリソース割り当てのための統合ゲインを含む,ISGCの2つの主要なメリットをキャプチャする統合フレームワークを導入する。
- 参考スコア(独自算出の注目度): 57.317580645602895
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: As the Metaverse continues to grow, the need for efficient communication and
intelligent content generation becomes increasingly important. Semantic
communication focuses on conveying meaning and understanding from user inputs,
while AI-Generated Content utilizes artificial intelligence to create digital
content and experiences. Integrated Semantic Communication and AI-Generated
Content (ISGC) has attracted a lot of attentions recently, which transfers
semantic information from user inputs, generates digital content, and renders
graphics for Metaverse. In this paper, we introduce a unified framework that
captures ISGC two primary benefits, including integration gain for optimized
resource allocation and coordination gain for goal-oriented high-quality
content generation to improve immersion from both communication and content
perspectives. We also classify existing ISGC solutions, analyze the major
components of ISGC, and present several use cases. We then construct a case
study based on the diffusion model to identify an optimal resource allocation
strategy for performing semantic extraction, content generation, and graphic
rendering in the Metaverse. Finally, we discuss several open research issues,
encouraging further exploring the potential of ISGC and its related
applications in the Metaverse.
- Abstract(参考訳): Metaverseが成長を続けるにつれて、効率的なコミュニケーションとインテリジェントなコンテンツ生成の必要性がますます重要になっている。
セマンティックコミュニケーションはユーザ入力から意味と理解を伝えることに焦点を当て、AI生成コンテンツは人工知能を使用してデジタルコンテンツと体験を作成する。
統合セマンティックコミュニケーションとAI生成コンテンツ(ISGC)は最近多くの注目を集めており、ユーザ入力から意味情報を転送し、デジタルコンテンツを生成し、Metaverseのグラフィックを描画する。
本稿では,isgcの資源割当を最適化するための統合ゲインと,目標指向の高品質コンテンツ生成のための協調ゲインと,コミュニケーションとコンテンツの両方の観点からの没入性を改善するための統合フレームワークを提案する。
また,既存のisgcソリューションを分類し,isgcの主要コンポーネントを分析し,いくつかのユースケースを示す。
次に,拡散モデルに基づくケーススタディを構築し,メタバースにおける意味抽出,コンテンツ生成,グラフィックレンダリングを行うための最適なリソース割当戦略を同定する。
最後に,いくつかのオープン研究課題について議論し,isgcとその関連応用の可能性についてさらに検討する。
関連論文リスト
- Leveraging Entity Information for Cross-Modality Correlation Learning: The Entity-Guided Multimodal Summarization [49.08348604716746]
Multimodal Summarization with Multimodal Output (MSMO) は、テキストと関連する画像の両方を統合するマルチモーダル要約を作成することを目的としている。
本稿では,Entity-Guided Multimodal Summarization Model (EGMS)を提案する。
我々のモデルは,BART上に構築され,共有重み付きデュアルマルチモーダルエンコーダを用いて,テキスト画像とエンティティ画像情報を並列に処理する。
論文 参考訳(メタデータ) (2024-08-06T12:45:56Z) - Agent-driven Generative Semantic Communication with Cross-Modality and Prediction [57.335922373309074]
本稿では,強化学習に基づくエージェント駆動型ジェネリックセマンティックコミュニケーションフレームワークを提案する。
本研究では, エージェント支援型セマンティックエンコーダを開発し, 適応的セマンティック抽出とサンプリングを行う。
設計モデルの有効性をUA-DETRACデータセットを用いて検証し、全体的なA-GSCフレームワークの性能向上を実証した。
論文 参考訳(メタデータ) (2024-04-10T13:24:27Z) - Interplay of Semantic Communication and Knowledge Learning [17.508008926853186]
本章では,知識グラフ(KG)の利用に着目したSemComにおける知識学習の方法を明らかにする。
我々は,KG強化されたSemComシステムを導入し,レシーバを慎重に校正し,静的知識ベースからの知識を活用して復号性能を向上させる。
さらに、データ拡張のためのLarge Language Models (LLMs) との統合の可能性について検討し、SemComの潜在的な実装手段についてさらなる視点を提供する。
論文 参考訳(メタデータ) (2024-01-18T06:11:06Z) - Semantic Communications for Artificial Intelligence Generated Content
(AIGC) Toward Effective Content Creation [75.73229320559996]
本稿では,AIGCとSemComの統合の概念モデルを開発する。
AIGC技術を利用した新しいフレームワークが,意味情報のためのエンコーダおよびデコーダとして提案されている。
このフレームワークは、生成されたさまざまなタイプのコンテンツ、要求される品質、活用される意味情報に適応することができる。
論文 参考訳(メタデータ) (2023-08-09T13:17:21Z) - Prompting ChatGPT in MNER: Enhanced Multimodal Named Entity Recognition
with Auxiliary Refined Knowledge [27.152813529536424]
PGIM - ChatGPTを暗黙の知識基盤として活用することを目的とした2段階のフレームワークを提案する。
PGIMはより効率的なエンティティ予測のための補助知識を生成する。
これは、2つの古典的なMNERデータセットで最先端の手法より優れている。
論文 参考訳(メタデータ) (2023-05-20T15:24:38Z) - A Comprehensive Survey of AI-Generated Content (AIGC): A History of
Generative AI from GAN to ChatGPT [63.58711128819828]
ChatGPTおよびその他の生成AI(GAI)技術は、人工知能生成コンテンツ(AIGC)のカテゴリに属している。
AIGCの目標は、コンテンツ作成プロセスをより効率的かつアクセスしやすくし、高品質なコンテンツをより高速に生産できるようにすることである。
論文 参考訳(メタデータ) (2023-03-07T20:36:13Z) - Knowledge Graph Augmented Network Towards Multiview Representation
Learning for Aspect-based Sentiment Analysis [96.53859361560505]
本稿では,知識グラフ拡張ネットワーク(KGAN)を提案する。
KGANは感情の特徴表現を、文脈、構文、知識に基づく複数の視点から捉えている。
3つの人気のあるABSAベンチマークの実験は、我々のKGANの有効性と堅牢性を示している。
論文 参考訳(メタデータ) (2022-01-13T08:25:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。