Sequential Memory with Temporal Predictive Coding
- URL: http://arxiv.org/abs/2305.11982v2
- Date: Thu, 26 Oct 2023 15:39:02 GMT
- Title: Sequential Memory with Temporal Predictive Coding
- Authors: Mufeng Tang, Helen Barron and Rafal Bogacz
- Abstract summary: We propose a PC-based model for emphsequential memory, called emphtemporal predictive coding (tPC)
We show that our tPC models can memorize and retrieve sequential inputs accurately with a biologically plausible neural implementation.
- Score: 6.228559238589584
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Forming accurate memory of sequential stimuli is a fundamental function of
biological agents. However, the computational mechanism underlying sequential
memory in the brain remains unclear. Inspired by neuroscience theories and
recent successes in applying predictive coding (PC) to \emph{static} memory
tasks, in this work we propose a novel PC-based model for \emph{sequential}
memory, called \emph{temporal predictive coding} (tPC). We show that our tPC
models can memorize and retrieve sequential inputs accurately with a
biologically plausible neural implementation. Importantly, our analytical study
reveals that tPC can be viewed as a classical Asymmetric Hopfield Network (AHN)
with an implicit statistical whitening process, which leads to more stable
performance in sequential memory tasks of structured inputs. Moreover, we find
that tPC exhibits properties consistent with behavioral observations and
theories in neuroscience, thereby strengthening its biological relevance. Our
work establishes a possible computational mechanism underlying sequential
memory in the brain that can also be theoretically interpreted using existing
memory model frameworks.
Related papers
- Predictive Attractor Models [9.947717243638289]
We propose textitPredictive Attractor Models (PAM), a novel sequence memory architecture with desirable generative properties.
PAM avoids catastrophic forgetting by uniquely representing past context through lateral inhibition in cortical minicolumns.
We show that PAM is trained with local computations through Hebbian plasticity rules in a biologically plausible framework.
arXiv Detail & Related papers (2024-10-03T12:25:01Z) - Hierarchical Working Memory and a New Magic Number [1.024113475677323]
We propose a recurrent neural network model for chunking within the framework of the synaptic theory of working memory.
Our work provides a novel conceptual and analytical framework for understanding the on-the-fly organization of information in the brain that is crucial for cognition.
arXiv Detail & Related papers (2024-08-14T16:03:47Z) - Enhancing Length Extrapolation in Sequential Models with Pointer-Augmented Neural Memory [66.88278207591294]
We propose Pointer-Augmented Neural Memory (PANM) to help neural networks understand and apply symbol processing to new, longer sequences of data.
PANM integrates an external neural memory that uses novel physical addresses and pointer manipulation techniques to mimic human and computer symbol processing abilities.
arXiv Detail & Related papers (2024-04-18T03:03:46Z) - The Expressive Leaky Memory Neuron: an Efficient and Expressive Phenomenological Neuron Model Can Solve Long-Horizon Tasks [64.08042492426992]
We introduce the Expressive Memory (ELM) neuron model, a biologically inspired model of a cortical neuron.
Our ELM neuron can accurately match the aforementioned input-output relationship with under ten thousand trainable parameters.
We evaluate it on various tasks with demanding temporal structures, including the Long Range Arena (LRA) datasets.
arXiv Detail & Related papers (2023-06-14T13:34:13Z) - Sequence learning in a spiking neuronal network with memristive synapses [0.0]
A core concept that lies at the heart of brain computation is sequence learning and prediction.
Neuromorphic hardware emulates the way the brain processes information and maps neurons and synapses directly into a physical substrate.
We study the feasibility of using ReRAM devices as a replacement of the biological synapses in the sequence learning model.
arXiv Detail & Related papers (2022-11-29T21:07:23Z) - Cross-Frequency Coupling Increases Memory Capacity in Oscillatory Neural
Networks [69.42260428921436]
Cross-frequency coupling (CFC) is associated with information integration across populations of neurons.
We construct a model of CFC which predicts a computational role for observed $theta - gamma$ oscillatory circuits in the hippocampus and cortex.
We show that the presence of CFC increases the memory capacity of a population of neurons connected by plastic synapses.
arXiv Detail & Related papers (2022-04-05T17:13:36Z) - Mapping and Validating a Point Neuron Model on Intel's Neuromorphic
Hardware Loihi [77.34726150561087]
We investigate the potential of Intel's fifth generation neuromorphic chip - Loihi'
Loihi is based on the novel idea of Spiking Neural Networks (SNNs) emulating the neurons in the brain.
We find that Loihi replicates classical simulations very efficiently and scales notably well in terms of both time and energy performance as the networks get larger.
arXiv Detail & Related papers (2021-09-22T16:52:51Z) - Kanerva++: extending The Kanerva Machine with differentiable, locally
block allocated latent memory [75.65949969000596]
Episodic and semantic memory are critical components of the human memory model.
We develop a new principled Bayesian memory allocation scheme that bridges the gap between episodic and semantic memory.
We demonstrate that this allocation scheme improves performance in memory conditional image generation.
arXiv Detail & Related papers (2021-02-20T18:40:40Z) - Slow manifolds in recurrent networks encode working memory efficiently
and robustly [0.0]
Working memory is a cognitive function involving the storage and manipulation of latent information over brief intervals of time.
We use a top-down modeling approach to examine network-level mechanisms of working memory.
arXiv Detail & Related papers (2021-01-08T18:47:02Z) - A Neural Dynamic Model based on Activation Diffusion and a
Micro-Explanation for Cognitive Operations [4.416484585765028]
The neural mechanism of memory has a very close relation with the problem of representation in artificial intelligence.
A computational model was proposed to simulate the network of neurons in brain and how they process information.
arXiv Detail & Related papers (2020-11-27T01:34:08Z) - Towards a Neural Model for Serial Order in Frontal Cortex: a Brain
Theory from Memory Development to Higher-Level Cognition [53.816853325427424]
We propose that the immature prefrontal cortex (PFC) use its primary functionality of detecting hierarchical patterns in temporal signals.
Our hypothesis is that the PFC detects the hierarchical structure in temporal sequences in the form of ordinal patterns and use them to index information hierarchically in different parts of the brain.
By doing so, it gives the tools to the language-ready brain for manipulating abstract knowledge and planning temporally ordered information.
arXiv Detail & Related papers (2020-05-22T14:29:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.