Mapping and Validating a Point Neuron Model on Intel's Neuromorphic
Hardware Loihi
- URL: http://arxiv.org/abs/2109.10835v1
- Date: Wed, 22 Sep 2021 16:52:51 GMT
- Title: Mapping and Validating a Point Neuron Model on Intel's Neuromorphic
Hardware Loihi
- Authors: Srijanie Dey and Alexander Dimitrov
- Abstract summary: We investigate the potential of Intel's fifth generation neuromorphic chip - Loihi'
Loihi is based on the novel idea of Spiking Neural Networks (SNNs) emulating the neurons in the brain.
We find that Loihi replicates classical simulations very efficiently and scales notably well in terms of both time and energy performance as the networks get larger.
- Score: 77.34726150561087
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Neuromorphic hardware is based on emulating the natural biological structure
of the brain. Since its computational model is similar to standard neural
models, it could serve as a computational acceleration for research projects in
the field of neuroscience and artificial intelligence, including biomedical
applications. However, in order to exploit this new generation of computer
chips, rigorous simulation and consequent validation of brain-based
experimental data is imperative. In this work, we investigate the potential of
Intel's fifth generation neuromorphic chip - `Loihi', which is based on the
novel idea of Spiking Neural Networks (SNNs) emulating the neurons in the
brain. The work is implemented in context of simulating the Leaky Integrate and
Fire (LIF) models based on the mouse primary visual cortex matched to a rich
data set of anatomical, physiological and behavioral constraints. Simulations
on the classical hardware serve as the validation platform for the neuromorphic
implementation. We find that Loihi replicates classical simulations very
efficiently and scales notably well in terms of both time and energy
performance as the networks get larger.
Related papers
- A Realistic Simulation Framework for Analog/Digital Neuromorphic Architectures [73.65190161312555]
ARCANA is a spiking neural network simulator designed to account for the properties of mixed-signal neuromorphic circuits.
We show how the results obtained provide a reliable estimate of the behavior of the spiking neural network trained in software.
arXiv Detail & Related papers (2024-09-23T11:16:46Z) - Contrastive Learning in Memristor-based Neuromorphic Systems [55.11642177631929]
Spiking neural networks have become an important family of neuron-based models that sidestep many of the key limitations facing modern-day backpropagation-trained deep networks.
In this work, we design and investigate a proof-of-concept instantiation of contrastive-signal-dependent plasticity (CSDP), a neuromorphic form of forward-forward-based, backpropagation-free learning.
arXiv Detail & Related papers (2024-09-17T04:48:45Z) - The Expressive Leaky Memory Neuron: an Efficient and Expressive Phenomenological Neuron Model Can Solve Long-Horizon Tasks [64.08042492426992]
We introduce the Expressive Memory (ELM) neuron model, a biologically inspired model of a cortical neuron.
Our ELM neuron can accurately match the aforementioned input-output relationship with under ten thousand trainable parameters.
We evaluate it on various tasks with demanding temporal structures, including the Long Range Arena (LRA) datasets.
arXiv Detail & Related papers (2023-06-14T13:34:13Z) - Sequence learning in a spiking neuronal network with memristive synapses [0.0]
A core concept that lies at the heart of brain computation is sequence learning and prediction.
Neuromorphic hardware emulates the way the brain processes information and maps neurons and synapses directly into a physical substrate.
We study the feasibility of using ReRAM devices as a replacement of the biological synapses in the sequence learning model.
arXiv Detail & Related papers (2022-11-29T21:07:23Z) - Spike-based local synaptic plasticity: A survey of computational models
and neuromorphic circuits [1.8464222520424338]
We review historical, bottom-up, and top-down approaches to modeling synaptic plasticity.
We identify computational primitives that can support low-latency and low-power hardware implementations of spike-based learning rules.
arXiv Detail & Related papers (2022-09-30T15:35:04Z) - Neuromorphic Artificial Intelligence Systems [58.1806704582023]
Modern AI systems, based on von Neumann architecture and classical neural networks, have a number of fundamental limitations in comparison with the brain.
This article discusses such limitations and the ways they can be mitigated.
It presents an overview of currently available neuromorphic AI projects in which these limitations are overcome.
arXiv Detail & Related papers (2022-05-25T20:16:05Z) - POPPINS : A Population-Based Digital Spiking Neuromorphic Processor with
Integer Quadratic Integrate-and-Fire Neurons [50.591267188664666]
We propose a population-based digital spiking neuromorphic processor in 180nm process technology with two hierarchy populations.
The proposed approach enables the developments of biomimetic neuromorphic system and various low-power, and low-latency inference processing applications.
arXiv Detail & Related papers (2022-01-19T09:26:34Z) - Evolving spiking neuron cellular automata and networks to emulate in
vitro neuronal activity [0.0]
We produce spiking neural systems that emulate the patterns of behavior of biological neurons in vitro.
Our models were able to produce a level of network-wide synchrony.
The genomes of the top-performing models indicate the excitability and density of connections in the model play an important role in determining the complexity of the produced activity.
arXiv Detail & Related papers (2021-10-15T17:55:04Z) - Neuromorphic Algorithm-hardware Codesign for Temporal Pattern Learning [11.781094547718595]
We derive an efficient training algorithm for Leaky Integrate and Fire neurons, which is capable of training a SNN to learn complex spatial temporal patterns.
We have developed a CMOS circuit implementation for a memristor-based network of neuron and synapses which retains critical neural dynamics with reduced complexity.
arXiv Detail & Related papers (2021-04-21T18:23:31Z) - Structural plasticity on an accelerated analog neuromorphic hardware
system [0.46180371154032884]
We present a strategy to achieve structural plasticity by constantly rewiring the pre- and gpostsynaptic partners.
We implemented this algorithm on the analog neuromorphic system BrainScaleS-2.
We evaluated our implementation in a simple supervised learning scenario, showing its ability to optimize the network topology.
arXiv Detail & Related papers (2019-12-27T10:15:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.