Prefix Propagation: Parameter-Efficient Tuning for Long Sequences
- URL: http://arxiv.org/abs/2305.12086v2
- Date: Wed, 24 May 2023 21:13:24 GMT
- Title: Prefix Propagation: Parameter-Efficient Tuning for Long Sequences
- Authors: Jonathan Li, Will Aitken, Rohan Bhambhoria, Xiaodan Zhu
- Abstract summary: We propose prefix-propagation, a simple but effective approach that conditions prefixes on previous hidden states.
We empirically demonstrate that prefix-propagation outperforms prefix-tuning across long-document tasks.
To the best of our knowledge, this work is the first to focus on parameter-efficient learning for long-sequence language tasks.
- Score: 35.15831629770172
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Parameter-efficient tuning aims to mitigate the large memory requirements of
adapting pretrained language models for downstream tasks. For example, one
popular method, prefix-tuning, prepends trainable tokens to sequences while
freezing the rest of the model's parameters. Although such models attain
comparable performance with fine-tuning when applied to sequences with short to
moderate lengths, we show their inferior performance when modelling long
sequences. To bridge this gap, we propose prefix-propagation, a simple but
effective approach that conditions prefixes on previous hidden states. We
empirically demonstrate that prefix-propagation outperforms prefix-tuning
across long-document tasks, while using 50% fewer parameters. To further
investigate the proposed architecture, we also show its advantage in
calibration, and perform additional study on its relationship with kernel
attention. To the best of our knowledge, this work is the first to focus on
parameter-efficient learning for long-sequence language tasks.
Related papers
- Parameter-Efficient Fine-Tuning of Large Language Models using Semantic Knowledge Tuning [0.08795040582681389]
Large Language Models (LLMs) are gaining significant popularity in recent years for specialized tasks using prompts.
We propose a novel method called Semantic Knowledge Tuning (SK-Tuning) for prompt and prefix tuning that employs meaningful words instead of random tokens.
Our experimental results show that SK-Tuning exhibits faster training times, fewer parameters, and superior performance on tasks such as text classification and understanding.
arXiv Detail & Related papers (2024-10-11T07:55:09Z) - Towards Infinite-Long Prefix in Transformer [18.24137806007111]
We study the ability of Prompting and context-based fine-tuning methods to match the performance of full parameter fine-tuning.
We implement an algorithm that only needs to introduce and fine-tune a few extra trainable parameters instead of an infinite-long prefix.
Our method achieves superior or competitive performance compared to existing methods like full parameters fine-tuning, P-Tuning V2, and LoRA.
arXiv Detail & Related papers (2024-06-20T06:56:35Z) - E^2VPT: An Effective and Efficient Approach for Visual Prompt Tuning [55.50908600818483]
Fine-tuning large-scale pretrained vision models for new tasks has become increasingly parameter-intensive.
We propose an Effective and Efficient Visual Prompt Tuning (E2VPT) approach for large-scale transformer-based model adaptation.
Our approach outperforms several state-of-the-art baselines on two benchmarks.
arXiv Detail & Related papers (2023-07-25T19:03:21Z) - PIP: Parse-Instructed Prefix for Syntactically Controlled Paraphrase
Generation [61.05254852400895]
Parse-Instructed Prefix (PIP) is a novel adaptation of prefix-tuning to tune large pre-trained language models.
In contrast to traditional fine-tuning methods for this task, PIP is a compute-efficient alternative with 10 times less learnable parameters.
arXiv Detail & Related papers (2023-05-26T07:42:38Z) - Towards Adaptive Prefix Tuning for Parameter-Efficient Language Model
Fine-tuning [32.84435258519842]
We propose Adaptive Prefix Tuning (APT) to adjust the prefix in terms of both fine-grained token level and coarse-grained layer level with a gate mechanism.
Experiments on the SuperGLUE and NER datasets show the effectiveness of APT.
arXiv Detail & Related papers (2023-05-24T14:51:01Z) - Inducer-tuning: Connecting Prefix-tuning and Adapter-tuning [53.72897232951918]
We show that inducer-tuning can close the performance gap between prefix-tuning and fine-tuning.
We suggest a new variant of prefix-tuning -- textitinducer-tuning, which shares the exact mechanism as prefix-tuning while leveraging the residual form found in adapter-tuning.
arXiv Detail & Related papers (2022-10-26T04:39:42Z) - Simple and Effective Gradient-Based Tuning of Sequence-to-Sequence
Models [8.370770440898454]
Huge cost of training larger language models can make tuning them prohibitively expensive.
We apply gradient-based hyper- parameter optimization to sequence-to-sequence tasks for the first time.
We show efficiency and performance gains over strong baselines for both Neural Machine Translation and Natural Language Understanding (NLU) tasks.
arXiv Detail & Related papers (2022-09-10T14:52:41Z) - Prompt Tuning for Generative Multimodal Pretrained Models [75.44457974275154]
We implement prompt tuning on the unified sequence-to-sequence pretrained model adaptive to both understanding and generation tasks.
Experimental results demonstrate that the light-weight prompt tuning can achieve comparable performance with finetuning.
In comparison with finetuned models, the prompt-tuned models demonstrate improved robustness against adversarial attacks.
arXiv Detail & Related papers (2022-08-04T08:56:38Z) - Few-Shot Parameter-Efficient Fine-Tuning is Better and Cheaper than
In-Context Learning [81.3514358542452]
Few-shot in-context learning (ICL) incurs substantial computational, memory, and storage costs because it involves processing all of the training examples every time a prediction is made.
parameter-efficient fine-tuning offers an alternative paradigm where a small set of parameters are trained to enable a model to perform the new task.
In this paper, we rigorously compare few-shot ICL and parameter-efficient fine-tuning and demonstrate that the latter offers better accuracy as well as dramatically lower computational costs.
arXiv Detail & Related papers (2022-05-11T17:10:41Z) - Prefix-Tuning: Optimizing Continuous Prompts for Generation [85.6357778621526]
Fine-tuning is the de facto way to leverage large pretrained language models to perform downstream tasks.
We propose prefix-tuning, a lightweight alternative to fine-tuning for natural language generation tasks.
We find that by learning only 0.1% of the parameters, prefix-tuning obtains comparable performance in the full data setting.
arXiv Detail & Related papers (2021-01-01T08:00:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.