論文の概要: UP5: Unbiased Foundation Model for Fairness-aware Recommendation
- arxiv url: http://arxiv.org/abs/2305.12090v2
- Date: Wed, 29 May 2024 16:46:47 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-31 02:41:05.635257
- Title: UP5: Unbiased Foundation Model for Fairness-aware Recommendation
- Title(参考訳): UP5:Fairness-Aware RecommendationのためのUnbiased Foundation Model
- Authors: Wenyue Hua, Yingqiang Ge, Shuyuan Xu, Jianchao Ji, Yongfeng Zhang,
- Abstract要約: 大規模言語モデルが必然的に社会的なステレオタイプを永続させ、不公平なレコメンデーションをもたらすのではないかという懸念が高まっている。
本稿は,性別や年齢などのセンシティブな特徴に公正であるように,レコメンデーションシステムを必要とする,LDMベースの推薦に対するユーザ側の公正性に焦点を当てる。
フェアネスを意識したLLMレコメンデーションのための新しいCFP法をUnbiased Foundation mOdels(UFO)に導入する。
- 参考スコア(独自算出の注目度): 45.47673627667594
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent advances in Foundation Models such as Large Language Models (LLMs) have propelled them to the forefront of Recommender Systems (RS). Despite their utility, there is a growing concern that LLMs might inadvertently perpetuate societal stereotypes, resulting in unfair recommendations. Since fairness is critical for RS as many users take it for decision-making and demand fulfillment, this paper focuses on user-side fairness for LLM-based recommendation where the users may require a recommender system to be fair on specific sensitive features such as gender or age. In this paper, we dive into the extent of unfairness exhibited by LLM-based recommender models based on both T5 and LLaMA backbones, and discuss appropriate methods for promoting equitable treatment of users in LLM-based recommendation models. We introduce a novel Counterfactually-Fair-Prompt (CFP) method towards Unbiased Foundation mOdels (UFO) for fairness-aware LLM-based recommendation. Experiments are conducted on two real-world datasets, MovieLens-1M and Insurance, and compared with both matching-based and sequential-based fairness-aware recommendation models. Results show that CFP achieves better recommendation performance with a high level of fairness. Data and code are open-sourced at https://github.com/agiresearch/UP5.
- Abstract(参考訳): LLM(Large Language Models)のような基礎モデルの最近の進歩は、それらをRecommender Systems(RS)の最前線へと押し上げている。
実用性にもかかわらず、LSMが社会的ステレオタイプを必然的に持続させ、不当な勧告をもたらすのではないかという懸念が高まっている。
本論文は,多くのユーザが意思決定や需要充足のために考えるように,RSにとって公平性は不可欠であるため,性別や年齢などの特定の敏感な特徴に公平であるように推奨するレコメンデーションに対して,ユーザ側の公正性に焦点をあてる。
本稿では,LLM ベースのレコメンデーションモデルにおいて,T5 と LLaMA のバックボーンをベースとしたレコメンデーションモデルが示す不公平さの程度について検討し,LLM ベースのレコメンデーションモデルにおけるユーザの公平な扱いを促進するための適切な方法について議論する。
フェアネスを意識したLLMレコメンデーションのための新しいCFP法をUnbiased Foundation mOdels(UFO)に導入する。
実世界の2つのデータセットであるMovieLens-1MとInsurationで実験を行い、マッチングベースとシーケンシャルベースの両方のフェアネス対応レコメンデーションモデルと比較した。
その結果,CFPは高い公正度でより優れたレコメンデーション性能が得られることがわかった。
データとコードはhttps://github.com/agiresearch/UP5.comで公開されている。
関連論文リスト
- STAR: A Simple Training-free Approach for Recommendations using Large Language Models [36.18841135511487]
大規模言語モデル(LLM)の最近の進歩は、レコメンデーションシステム(RecSys)タスクに有望な新しいアプローチを提供する。
LLMを利用するフレームワークを提案し、微調整を必要とせずに様々なレコメンデーションタスクに適用できる。
本手法はHits@10のパフォーマンスが23.8%,Toys and Gamesが37.5%,Sports and Outdoorsが1.8%であった。
論文 参考訳(メタデータ) (2024-10-21T19:34:40Z) - HLLM: Enhancing Sequential Recommendations via Hierarchical Large Language Models for Item and User Modeling [21.495443162191332]
大規模言語モデル(LLM)は様々な分野で顕著な成功を収めており、いくつかの研究がレコメンデーションシステムにおいてその可能性を探求している。
逐次レコメンデーションシステムを強化するために,新しい階層型大規模言語モデル (HLLM) アーキテクチャを提案する。
HLLMは,項目特徴抽出とユーザ関心モデリングの両方に 7B パラメータを利用する構成で,優れたスケーラビリティを実現している。
論文 参考訳(メタデータ) (2024-09-19T13:03:07Z) - On Softmax Direct Preference Optimization for Recommendation [50.896117978746]
そこで我々は,LMをベースとした推奨項目の識別を支援するために,ランキング情報をLMに挿入するソフトマックスDPO(S-DPO)を提案する。
具体的には、ユーザの嗜好データに複数の負を組み込んで、LMベースのレコメンデータに適したDPO損失の代替版を考案する。
論文 参考訳(メタデータ) (2024-06-13T15:16:11Z) - A Normative Framework for Benchmarking Consumer Fairness in Large Language Model Recommender System [9.470545149911072]
本稿では,LCMを利用したリコメンデータシステムにおいて,消費者の公正性をベンチマークするための規範的フレームワークを提案する。
このギャップは公平性に関する任意の結論につながる可能性があると我々は主張する。
MovieLensデータセットの消費者の公正性に関する実験は、年齢ベースの推奨において公平さの偏りを明らかにしている。
論文 参考訳(メタデータ) (2024-05-03T16:25:27Z) - LLMRS: Unlocking Potentials of LLM-Based Recommender Systems for
Software Purchase [0.6597195879147557]
Large Language Models (LLM) は、ユーザクエリを分析するための有望な結果を提供する。
LLMをベースとしたゼロショットレコメンデーションシステムであるLLMRSを提案し,レビュースコアにユーザレビューをエンコードし,ユーザに適したレコメンデーションを生成する。
論文 参考訳(メタデータ) (2024-01-12T16:33:17Z) - LLMRec: Benchmarking Large Language Models on Recommendation Task [54.48899723591296]
推奨領域におけるLarge Language Models (LLMs) の適用について, 十分に検討されていない。
我々は、評価予測、シーケンシャルレコメンデーション、直接レコメンデーション、説明生成、レビュー要約を含む5つのレコメンデーションタスクにおいて、市販のLLMをベンチマークする。
ベンチマークの結果,LLMは逐次的・直接的推薦といった精度に基づくタスクにおいて適度な熟練度しか示さないことがわかった。
論文 参考訳(メタデータ) (2023-08-23T16:32:54Z) - A Survey on Large Language Models for Recommendation [77.91673633328148]
大規模言語モデル(LLM)は自然言語処理(NLP)の分野で強力なツールとして登場した。
本調査では,これらのモデルを2つの主要なパラダイム(DLLM4Rec)とジェネレーティブLSM4Rec(GLLM4Rec)に分類する。
論文 参考訳(メタデータ) (2023-05-31T13:51:26Z) - Is ChatGPT Fair for Recommendation? Evaluating Fairness in Large
Language Model Recommendation [52.62492168507781]
LLM(FaiRLLM)を用いたFairness of Recommendationと呼ばれる新しいベンチマークを提案する。
このベンチマークは、慎重に作成されたメトリクスと、8つの機密属性を考慮に入れたデータセットで構成されている。
FaiRLLMベンチマークを用いて、ChatGPTの評価を行い、レコメンデーションを生成する際には、いくつかの機密属性に対して不公平であることがわかった。
論文 参考訳(メタデータ) (2023-05-12T16:54:36Z) - Improving Recommendation Fairness via Data Augmentation [66.4071365614835]
協調フィルタリングに基づくレコメンデーションは、すべてのユーザの過去の行動データからユーザの好みを学習し、意思決定を容易にするために人気がある。
ユーザの敏感な属性に応じて異なるユーザグループに対して等しく機能しない場合には,レコメンダシステムは不公平であると考えられる。
本稿では,データ拡張の観点から,レコメンデーションフェアネスを改善する方法について検討する。
論文 参考訳(メタデータ) (2023-02-13T13:11:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。