UP5: Unbiased Foundation Model for Fairness-aware Recommendation
- URL: http://arxiv.org/abs/2305.12090v2
- Date: Wed, 29 May 2024 16:46:47 GMT
- Title: UP5: Unbiased Foundation Model for Fairness-aware Recommendation
- Authors: Wenyue Hua, Yingqiang Ge, Shuyuan Xu, Jianchao Ji, Yongfeng Zhang,
- Abstract summary: A growing concern that Large Language Models might inadvertently perpetuate societal stereotypes, resulting in unfair recommendations.
This paper focuses on user-side fairness for LLM-based recommendation where the users may require a recommender system to be fair on sensitive features such as gender or age.
We introduce a novel Counterfactually-Fair-Prompt (CFP) method towards Unbiased Foundation mOdels (UFO) for fairness-aware LLM-based recommendation.
- Score: 45.47673627667594
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent advances in Foundation Models such as Large Language Models (LLMs) have propelled them to the forefront of Recommender Systems (RS). Despite their utility, there is a growing concern that LLMs might inadvertently perpetuate societal stereotypes, resulting in unfair recommendations. Since fairness is critical for RS as many users take it for decision-making and demand fulfillment, this paper focuses on user-side fairness for LLM-based recommendation where the users may require a recommender system to be fair on specific sensitive features such as gender or age. In this paper, we dive into the extent of unfairness exhibited by LLM-based recommender models based on both T5 and LLaMA backbones, and discuss appropriate methods for promoting equitable treatment of users in LLM-based recommendation models. We introduce a novel Counterfactually-Fair-Prompt (CFP) method towards Unbiased Foundation mOdels (UFO) for fairness-aware LLM-based recommendation. Experiments are conducted on two real-world datasets, MovieLens-1M and Insurance, and compared with both matching-based and sequential-based fairness-aware recommendation models. Results show that CFP achieves better recommendation performance with a high level of fairness. Data and code are open-sourced at https://github.com/agiresearch/UP5.
Related papers
- STAR: A Simple Training-free Approach for Recommendations using Large Language Models [36.18841135511487]
Recent progress in large language models (LLMs) offers promising new approaches for recommendation system (RecSys) tasks.
We propose a framework that utilizes LLMs and can be applied to various recommendation tasks without the need for fine-tuning.
Our method achieves Hits@10 performance of +23.8% on Beauty, +37.5% on Toys and Games, and -1.8% on Sports and Outdoors.
arXiv Detail & Related papers (2024-10-21T19:34:40Z) - HLLM: Enhancing Sequential Recommendations via Hierarchical Large Language Models for Item and User Modeling [21.495443162191332]
Large Language Models (LLMs) have achieved remarkable success in various fields, prompting several studies to explore their potential in recommendation systems.
We propose a novel Hierarchical Large Language Model (HLLM) architecture designed to enhance sequential recommendation systems.
HLLM achieves excellent scalability, with the largest configuration utilizing 7B parameters for both item feature extraction and user interest modeling.
arXiv Detail & Related papers (2024-09-19T13:03:07Z) - On Softmax Direct Preference Optimization for Recommendation [50.896117978746]
We propose Softmax-DPO (S-DPO) to instill ranking information into the LM to help LM-based recommenders distinguish preferred items from negatives.
Specifically, we incorporate multiple negatives in user preference data and devise an alternative version of DPO loss tailored for LM-based recommenders.
arXiv Detail & Related papers (2024-06-13T15:16:11Z) - A Normative Framework for Benchmarking Consumer Fairness in Large Language Model Recommender System [9.470545149911072]
This paper proposes a normative framework to benchmark consumer fairness in LLM-powered recommender systems.
We argue that this gap can lead to arbitrary conclusions about fairness.
Experiments on the MovieLens dataset on consumer fairness reveal fairness deviations in age-based recommendations.
arXiv Detail & Related papers (2024-05-03T16:25:27Z) - LLMRS: Unlocking Potentials of LLM-Based Recommender Systems for
Software Purchase [0.6597195879147557]
Large Language Models (LLM) offer promising results for analyzing user queries.
We propose LLMRS, an LLM-based zero-shot recommender system where we employ pre-trained LLM to encode user reviews into a review score and generate user-tailored recommendations.
arXiv Detail & Related papers (2024-01-12T16:33:17Z) - LLMRec: Benchmarking Large Language Models on Recommendation Task [54.48899723591296]
The application of Large Language Models (LLMs) in the recommendation domain has not been thoroughly investigated.
We benchmark several popular off-the-shelf LLMs on five recommendation tasks, including rating prediction, sequential recommendation, direct recommendation, explanation generation, and review summarization.
The benchmark results indicate that LLMs displayed only moderate proficiency in accuracy-based tasks such as sequential and direct recommendation.
arXiv Detail & Related papers (2023-08-23T16:32:54Z) - A Survey on Large Language Models for Recommendation [77.91673633328148]
Large Language Models (LLMs) have emerged as powerful tools in the field of Natural Language Processing (NLP)
This survey presents a taxonomy that categorizes these models into two major paradigms, respectively Discriminative LLM for Recommendation (DLLM4Rec) and Generative LLM for Recommendation (GLLM4Rec)
arXiv Detail & Related papers (2023-05-31T13:51:26Z) - Is ChatGPT Fair for Recommendation? Evaluating Fairness in Large
Language Model Recommendation [52.62492168507781]
We propose a novel benchmark called Fairness of Recommendation via LLM (FaiRLLM)
This benchmark comprises carefully crafted metrics and a dataset that accounts for eight sensitive attributes.
By utilizing our FaiRLLM benchmark, we conducted an evaluation of ChatGPT and discovered that it still exhibits unfairness to some sensitive attributes when generating recommendations.
arXiv Detail & Related papers (2023-05-12T16:54:36Z) - Improving Recommendation Fairness via Data Augmentation [66.4071365614835]
Collaborative filtering based recommendation learns users' preferences from all users' historical behavior data, and has been popular to facilitate decision making.
A recommender system is considered unfair when it does not perform equally well for different user groups according to users' sensitive attributes.
In this paper, we study how to improve recommendation fairness from the data augmentation perspective.
arXiv Detail & Related papers (2023-02-13T13:11:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.