STAR: A Simple Training-free Approach for Recommendations using Large Language Models
- URL: http://arxiv.org/abs/2410.16458v1
- Date: Mon, 21 Oct 2024 19:34:40 GMT
- Title: STAR: A Simple Training-free Approach for Recommendations using Large Language Models
- Authors: Dong-Ho Lee, Adam Kraft, Long Jin, Nikhil Mehta, Taibai Xu, Lichan Hong, Ed H. Chi, Xinyang Yi,
- Abstract summary: Recent progress in large language models (LLMs) offers promising new approaches for recommendation system (RecSys) tasks.
We propose a framework that utilizes LLMs and can be applied to various recommendation tasks without the need for fine-tuning.
Our method achieves Hits@10 performance of +23.8% on Beauty, +37.5% on Toys and Games, and -1.8% on Sports and Outdoors.
- Score: 36.18841135511487
- License:
- Abstract: Recent progress in large language models (LLMs) offers promising new approaches for recommendation system (RecSys) tasks. While the current state-of-the-art methods rely on fine-tuning LLMs to achieve optimal results, this process is costly and introduces significant engineering complexities. Conversely, methods that bypass fine-tuning and use LLMs directly are less resource-intensive but often fail to fully capture both semantic and collaborative information, resulting in sub-optimal performance compared to their fine-tuned counterparts. In this paper, we propose a Simple Training-free Approach for Recommendation (STAR), a framework that utilizes LLMs and can be applied to various recommendation tasks without the need for fine-tuning. Our approach involves a retrieval stage that uses semantic embeddings from LLMs combined with collaborative user information to retrieve candidate items. We then apply an LLM for pairwise ranking to enhance next-item prediction. Experimental results on the Amazon Review dataset show competitive performance for next item prediction, even with our retrieval stage alone. Our full method achieves Hits@10 performance of +23.8% on Beauty, +37.5% on Toys and Games, and -1.8% on Sports and Outdoors relative to the best supervised models. This framework offers an effective alternative to traditional supervised models, highlighting the potential of LLMs in recommendation systems without extensive training or custom architectures.
Related papers
- HLLM: Enhancing Sequential Recommendations via Hierarchical Large Language Models for Item and User Modeling [21.495443162191332]
Large Language Models (LLMs) have achieved remarkable success in various fields, prompting several studies to explore their potential in recommendation systems.
We propose a novel Hierarchical Large Language Model (HLLM) architecture designed to enhance sequential recommendation systems.
HLLM achieves excellent scalability, with the largest configuration utilizing 7B parameters for both item feature extraction and user interest modeling.
arXiv Detail & Related papers (2024-09-19T13:03:07Z) - Achieving Peak Performance for Large Language Models: A Systematic Review [0.0]
Large language models (LLMs) have achieved remarkable success in natural language processing (NLP)
As models grow into the trillion- parameter range, computational and memory costs increase significantly.
This makes it difficult for many researchers to access the resources needed to train or apply these models.
arXiv Detail & Related papers (2024-09-07T13:57:41Z) - The Ultimate Guide to Fine-Tuning LLMs from Basics to Breakthroughs: An Exhaustive Review of Technologies, Research, Best Practices, Applied Research Challenges and Opportunities [0.35998666903987897]
This report examines the fine-tuning of Large Language Models (LLMs)
It outlines the historical evolution of LLMs from traditional Natural Language Processing (NLP) models to their pivotal role in AI.
The report introduces a structured seven-stage pipeline for fine-tuning LLMs.
arXiv Detail & Related papers (2024-08-23T14:48:02Z) - DaRec: A Disentangled Alignment Framework for Large Language Model and Recommender System [83.34921966305804]
Large language models (LLMs) have demonstrated remarkable performance in recommender systems.
We propose a novel plug-and-play alignment framework for LLMs and collaborative models.
Our method is superior to existing state-of-the-art algorithms.
arXiv Detail & Related papers (2024-08-15T15:56:23Z) - Large Language Models meet Collaborative Filtering: An Efficient All-round LLM-based Recommender System [19.8986219047121]
Collaborative filtering recommender systems (CF-RecSys) have shown successive results in enhancing the user experience on social media and e-commerce platforms.
Recent strategies have focused on leveraging modality information of user/items based on pre-trained modality encoders and Large Language Models.
We propose an efficient All-round LLM-based Recommender system, called A-LLMRec, that excels not only in the cold scenario but also in the warm scenario.
arXiv Detail & Related papers (2024-04-17T13:03:07Z) - Self-Play Fine-Tuning Converts Weak Language Models to Strong Language Models [52.98743860365194]
We propose a new fine-tuning method called Self-Play fIne-tuNing (SPIN)
At the heart of SPIN lies a self-play mechanism, where the LLM refines its capability by playing against instances of itself.
This sheds light on the promise of self-play, enabling the achievement of human-level performance in LLMs without the need for expert opponents.
arXiv Detail & Related papers (2024-01-02T18:53:13Z) - CoLLM: Integrating Collaborative Embeddings into Large Language Models for Recommendation [60.2700801392527]
We introduce CoLLM, an innovative LLMRec methodology that seamlessly incorporates collaborative information into LLMs for recommendation.
CoLLM captures collaborative information through an external traditional model and maps it to the input token embedding space of LLM.
Extensive experiments validate that CoLLM adeptly integrates collaborative information into LLMs, resulting in enhanced recommendation performance.
arXiv Detail & Related papers (2023-10-30T12:25:00Z) - Aligning Large Language Models with Human: A Survey [53.6014921995006]
Large Language Models (LLMs) trained on extensive textual corpora have emerged as leading solutions for a broad array of Natural Language Processing (NLP) tasks.
Despite their notable performance, these models are prone to certain limitations such as misunderstanding human instructions, generating potentially biased content, or factually incorrect information.
This survey presents a comprehensive overview of these alignment technologies, including the following aspects.
arXiv Detail & Related papers (2023-07-24T17:44:58Z) - Unlocking the Potential of User Feedback: Leveraging Large Language
Model as User Simulator to Enhance Dialogue System [65.93577256431125]
We propose an alternative approach called User-Guided Response Optimization (UGRO) to combine it with a smaller task-oriented dialogue model.
This approach uses LLM as annotation-free user simulator to assess dialogue responses, combining them with smaller fine-tuned end-to-end TOD models.
Our approach outperforms previous state-of-the-art (SOTA) results.
arXiv Detail & Related papers (2023-06-16T13:04:56Z) - A Survey on Large Language Models for Recommendation [77.91673633328148]
Large Language Models (LLMs) have emerged as powerful tools in the field of Natural Language Processing (NLP)
This survey presents a taxonomy that categorizes these models into two major paradigms, respectively Discriminative LLM for Recommendation (DLLM4Rec) and Generative LLM for Recommendation (GLLM4Rec)
arXiv Detail & Related papers (2023-05-31T13:51:26Z) - PALR: Personalization Aware LLMs for Recommendation [7.407353565043918]
PALR aims to combine user history behaviors (such as clicks, purchases, ratings, etc.) with large language models (LLMs) to generate user preferred items.
Our solution outperforms state-of-the-art models on various sequential recommendation tasks.
arXiv Detail & Related papers (2023-05-12T17:21:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.