Logic-LM: Empowering Large Language Models with Symbolic Solvers for
Faithful Logical Reasoning
- URL: http://arxiv.org/abs/2305.12295v2
- Date: Thu, 19 Oct 2023 01:54:27 GMT
- Title: Logic-LM: Empowering Large Language Models with Symbolic Solvers for
Faithful Logical Reasoning
- Authors: Liangming Pan, Alon Albalak, Xinyi Wang, William Yang Wang
- Abstract summary: Large Language Models (LLMs) have shown human-like reasoning abilities but still struggle with complex logical problems.
This paper introduces a novel framework, Logic-LM, which integrates LLMs with symbolic solvers to improve logical problem-solving.
- Score: 101.26814728062065
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large Language Models (LLMs) have shown human-like reasoning abilities but
still struggle with complex logical problems. This paper introduces a novel
framework, Logic-LM, which integrates LLMs with symbolic solvers to improve
logical problem-solving. Our method first utilizes LLMs to translate a natural
language problem into a symbolic formulation. Afterward, a deterministic
symbolic solver performs inference on the formulated problem. We also introduce
a self-refinement module, which utilizes the symbolic solver's error messages
to revise symbolic formalizations. We demonstrate Logic-LM's effectiveness on
five logical reasoning datasets: ProofWriter, PrOntoQA, FOLIO,
LogicalDeduction, and AR-LSAT. On average, Logic-LM achieves a significant
performance boost of 39.2% over using LLM alone with standard prompting and
18.4% over LLM with chain-of-thought prompting. Our findings suggest that
Logic-LM, by combining LLMs with symbolic logic, offers a promising avenue for
faithful logical reasoning. Code and data are publicly available at
https://github.com/teacherpeterpan/Logic-LLM.
Related papers
- LOGIC-LM++: Multi-Step Refinement for Symbolic Formulations [1.024113475677323]
This paper proposes Logic-LM++, an improvement on Logic-LM.
It uses the ability of LLMs to do pairwise comparisons, allowing the evaluation of the refinements suggested by the LLM.
arXiv Detail & Related papers (2024-06-22T12:50:41Z) - LogicBench: Towards Systematic Evaluation of Logical Reasoning Ability of Large Language Models [52.03659714625452]
Recently developed large language models (LLMs) have been shown to perform remarkably well on a wide range of language understanding tasks.
But, can they really "reason" over the natural language?
This question has been receiving significant research attention and many reasoning skills such as commonsense, numerical, and qualitative have been studied.
arXiv Detail & Related papers (2024-04-23T21:08:49Z) - Can Language Models Pretend Solvers? Logic Code Simulation with LLMs [3.802945676202634]
Transformer-based large language models (LLMs) have demonstrated significant potential in addressing logic problems.
This study delves into a novel aspect, namely logic code simulation, which forces LLMs to emulate logical solvers in predicting the results of logical programs.
arXiv Detail & Related papers (2024-03-24T11:27:16Z) - Do Large Language Models Understand Logic or Just Mimick Context? [14.081178100662163]
This paper investigates the reasoning capabilities of large language models (LLMs) on two logical reasoning datasets.
It is found that LLMs do not truly understand logical rules; rather, in-context learning has simply enhanced the likelihood of these models arriving at the correct answers.
arXiv Detail & Related papers (2024-02-19T12:12:35Z) - LogicAsker: Evaluating and Improving the Logical Reasoning Ability of Large Language Models [63.14196038655506]
We introduce LogicAsker, a novel approach for evaluating and enhancing the logical reasoning capabilities of large language models (LLMs)
Our methodology reveals significant gaps in LLMs' learning of logical rules, with identified reasoning failures ranging from 29% to 90% across different models.
We leverage these findings to construct targeted demonstration examples and fine-tune data, notably enhancing logical reasoning in models like GPT-4o by up to 5%.
arXiv Detail & Related papers (2024-01-01T13:53:53Z) - Language Models can be Logical Solvers [99.40649402395725]
We introduce LoGiPT, a novel language model that directly emulates the reasoning processes of logical solvers.
LoGiPT is fine-tuned on a newly constructed instruction-tuning dataset derived from revealing and refining the invisible reasoning process of deductive solvers.
arXiv Detail & Related papers (2023-11-10T16:23:50Z) - LINC: A Neurosymbolic Approach for Logical Reasoning by Combining
Language Models with First-Order Logic Provers [60.009969929857704]
Logical reasoning is an important task for artificial intelligence with potential impacts on science, mathematics, and society.
In this work, we reformulating such tasks as modular neurosymbolic programming, which we call LINC.
We observe significant performance gains on FOLIO and a balanced subset of ProofWriter for three different models in nearly all experimental conditions we evaluate.
arXiv Detail & Related papers (2023-10-23T17:58:40Z) - Exploring Self-supervised Logic-enhanced Training for Large Language Models [59.227222647741094]
In this paper, we make the first attempt to investigate the feasibility of incorporating logical knowledge through self-supervised post-training.
We devise an auto-regressive objective variant of MERIt and integrate it with two LLM series, i.e., FLAN-T5 and LLaMA, with parameter size ranging from 3 billion to 13 billion.
The results on two challenging logical reasoning benchmarks demonstrate the effectiveness of LogicLLM.
arXiv Detail & Related papers (2023-05-23T06:13:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.