Logic-of-Thought: Empowering Large Language Models with Logic Programs for Solving Puzzles in Natural Language
- URL: http://arxiv.org/abs/2505.16114v1
- Date: Thu, 22 May 2025 01:37:40 GMT
- Title: Logic-of-Thought: Empowering Large Language Models with Logic Programs for Solving Puzzles in Natural Language
- Authors: Naiqi Li, Peiyuan Liu, Zheng Liu, Tao Dai, Yong Jiang, Shu-Tao Xia,
- Abstract summary: Solving puzzles in natural language poses a long-standing challenge in AI.<n>We propose Logic-of-Thought, a framework that bridges large language models with logic programming.<n>We evaluate our method on various grid puzzles and dynamic puzzles involving actions, demonstrating near-perfect accuracy across all tasks.
- Score: 67.51318974970985
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Solving puzzles in natural language poses a long-standing challenge in AI. While large language models (LLMs) have recently shown impressive capabilities in a variety of tasks, they continue to struggle with complex puzzles that demand precise reasoning and exhaustive search. In this paper, we propose Logic-of-Thought (Logot), a novel framework that bridges LLMs with logic programming to address this problem. Our method leverages LLMs to translate puzzle rules and states into answer set programs (ASPs), the solution of which are then accurately and efficiently inferred by an ASP interpreter. This hybrid approach combines the natural language understanding of LLMs with the precise reasoning capabilities of logic programs. We evaluate our method on various grid puzzles and dynamic puzzles involving actions, demonstrating near-perfect accuracy across all tasks. Our code and data are available at: https://github.com/naiqili/Logic-of-Thought.
Related papers
- Solving Zebra Puzzles Using Constraint-Guided Multi-Agent Systems [25.0042181817455]
We introduce a multi-agent system, ZPS, that integrates Large Language Models with an off the shelf theorem prover.
This system tackles the complex puzzle-solving task by breaking down the problem into smaller, manageable parts.
We also introduce an automated grid puzzle grader to assess the correctness of our puzzle solutions and show that the automated grader is reliable by evaluating it in a user-study.
arXiv Detail & Related papers (2024-07-04T14:22:25Z) - LogicBench: Towards Systematic Evaluation of Logical Reasoning Ability of Large Language Models [52.03659714625452]
Recently developed large language models (LLMs) have been shown to perform remarkably well on a wide range of language understanding tasks.
But, can they really "reason" over the natural language?
This question has been receiving significant research attention and many reasoning skills such as commonsense, numerical, and qualitative have been studied.
arXiv Detail & Related papers (2024-04-23T21:08:49Z) - Are Language Models Puzzle Prodigies? Algorithmic Puzzles Unveil Serious
Challenges in Multimodal Reasoning [24.386388107656334]
This paper introduces the novel task of multimodal puzzle solving, framed within the context of visual question-answering.
We present a new dataset, AlgoVQA, designed to challenge and evaluate the capabilities of multimodal language models in solving algorithmic puzzles.
arXiv Detail & Related papers (2024-03-06T17:15:04Z) - Language Models can be Logical Solvers [99.40649402395725]
We introduce LoGiPT, a novel language model that directly emulates the reasoning processes of logical solvers.
LoGiPT is fine-tuned on a newly constructed instruction-tuning dataset derived from revealing and refining the invisible reasoning process of deductive solvers.
arXiv Detail & Related papers (2023-11-10T16:23:50Z) - When Do Program-of-Thoughts Work for Reasoning? [51.2699797837818]
We propose complexity-impacted reasoning score (CIRS) to measure correlation between code and reasoning abilities.
Specifically, we use the abstract syntax tree to encode the structural information and calculate logical complexity.
Code will be integrated into the EasyInstruct framework at https://github.com/zjunlp/EasyInstruct.
arXiv Detail & Related papers (2023-08-29T17:22:39Z) - Leveraging Large Language Models to Generate Answer Set Programs [5.532477732693001]
Large language models (LLMs) have demonstrated exceptional performance in various natural language processing tasks.
This paper proposes a neuro-symbolic method that combines the strengths of large language models and answer set programming.
arXiv Detail & Related papers (2023-07-15T03:40:55Z) - Logic-LM: Empowering Large Language Models with Symbolic Solvers for
Faithful Logical Reasoning [101.26814728062065]
Large Language Models (LLMs) have shown human-like reasoning abilities but still struggle with complex logical problems.
This paper introduces a novel framework, Logic-LM, which integrates LLMs with symbolic solvers to improve logical problem-solving.
arXiv Detail & Related papers (2023-05-20T22:25:38Z) - PAL: Program-aided Language Models [112.94785609781503]
We present Program-Aided Language models (PaL) to understand natural language problems.
PaL offloads the solution step to a programmatic runtime such as a Python interpreter.
We set new state-of-the-art results in all 12 benchmarks.
arXiv Detail & Related papers (2022-11-18T18:56:13Z) - Natural language understanding for logical games [0.9594432031144714]
We developed a system able to automatically solve logical puzzles in natural language.
Our solution is composed by a and an inference module.
We also empower our software agent with the capability to provide Yes/No answers to natural language questions related to each puzzle.
arXiv Detail & Related papers (2021-10-01T17:36:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.