Semantic-guided modeling of spatial relation and object co-occurrence for indoor scene recognition
- URL: http://arxiv.org/abs/2305.12661v4
- Date: Wed, 7 Aug 2024 11:37:02 GMT
- Title: Semantic-guided modeling of spatial relation and object co-occurrence for indoor scene recognition
- Authors: Chuanxin Song, Hanbo Wu, Xin Ma,
- Abstract summary: SpaCoNet simultaneously models Spatial relation and Co-occurrence of objects guided by semantic segmentation.
Experimental results on three widely used scene datasets demonstrate the effectiveness and generality of the proposed method.
- Score: 5.083140094792973
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Exploring the semantic context in scene images is essential for indoor scene recognition. However, due to the diverse intra-class spatial layouts and the coexisting inter-class objects, modeling contextual relationships to adapt various image characteristics is a great challenge. Existing contextual modeling methods for scene recognition exhibit two limitations: 1) They typically model only one type of spatial relationship (order or metric) among objects within scenes, with limited exploration of diverse spatial layouts. 2) They often overlook the differences in coexisting objects across different scenes, suppressing scene recognition performance. To overcome these limitations, we propose SpaCoNet, which simultaneously models Spatial relation and Co-occurrence of objects guided by semantic segmentation. Firstly, the Semantic Spatial Relation Module (SSRM) is constructed to model scene spatial features. With the help of semantic segmentation, this module decouples spatial information from the scene image and thoroughly explores all spatial relationships among objects in an end-to-end manner, thereby obtaining semantic-based spatial features. Secondly, both spatial features from the SSRM and deep features from the Image Feature Extraction Module are allocated to each object, so as to distinguish the coexisting object across different scenes. Finally, utilizing the discriminative features above, we design a Global-Local Dependency Module to explore the long-range co-occurrence among objects, and further generate a semantic-guided feature representation for indoor scene recognition. Experimental results on three widely used scene datasets demonstrate the effectiveness and generality of the proposed method.
Related papers
- N2F2: Hierarchical Scene Understanding with Nested Neural Feature Fields [112.02885337510716]
Nested Neural Feature Fields (N2F2) is a novel approach that employs hierarchical supervision to learn a single feature field.
We leverage a 2D class-agnostic segmentation model to provide semantically meaningful pixel groupings at arbitrary scales in the image space.
Our approach outperforms the state-of-the-art feature field distillation methods on tasks such as open-vocabulary 3D segmentation and localization.
arXiv Detail & Related papers (2024-03-16T18:50:44Z) - LAW-Diffusion: Complex Scene Generation by Diffusion with Layouts [107.11267074981905]
We propose a semantically controllable layout-AWare diffusion model, termed LAW-Diffusion.
We show that LAW-Diffusion yields the state-of-the-art generative performance, especially with coherent object relations.
arXiv Detail & Related papers (2023-08-13T08:06:18Z) - SIRI: Spatial Relation Induced Network For Spatial Description
Resolution [64.38872296406211]
We propose a novel relationship induced (SIRI) network for language-guided localization.
We show that our method is around 24% better than the state-of-the-art method in terms of accuracy, measured by an 80-pixel radius.
Our method also generalizes well on our proposed extended dataset collected using the same settings as Touchdown.
arXiv Detail & Related papers (2020-10-27T14:04:05Z) - Intrinsic Relationship Reasoning for Small Object Detection [44.68289739449486]
Small objects in images and videos are usually not independent individuals. Instead, they more or less present some semantic and spatial layout relationships with each other.
We propose a novel context reasoning approach for small object detection which models and infers the intrinsic semantic and spatial layout relationships between objects.
arXiv Detail & Related papers (2020-09-02T06:03:05Z) - Improving Semantic Segmentation via Decoupled Body and Edge Supervision [89.57847958016981]
Existing semantic segmentation approaches either aim to improve the object's inner consistency by modeling the global context, or refine objects detail along their boundaries by multi-scale feature fusion.
In this paper, a new paradigm for semantic segmentation is proposed.
Our insight is that appealing performance of semantic segmentation requires textitexplicitly modeling the object textitbody and textitedge, which correspond to the high and low frequency of the image.
We show that the proposed framework with various baselines or backbone networks leads to better object inner consistency and object boundaries.
arXiv Detail & Related papers (2020-07-20T12:11:22Z) - Understanding Spatial Relations through Multiple Modalities [78.07328342973611]
spatial relations between objects can either be explicit -- expressed as spatial prepositions, or implicit -- expressed by spatial verbs such as moving, walking, shifting, etc.
We introduce the task of inferring implicit and explicit spatial relations between two entities in an image.
We design a model that uses both textual and visual information to predict the spatial relations, making use of both positional and size information of objects and image embeddings.
arXiv Detail & Related papers (2020-07-19T01:35:08Z) - Object-Centric Image Generation from Layouts [93.10217725729468]
We develop a layout-to-image-generation method to generate complex scenes with multiple objects.
Our method learns representations of the spatial relationships between objects in the scene, which lead to our model's improved layout-fidelity.
We introduce SceneFID, an object-centric adaptation of the popular Fr'echet Inception Distance metric, that is better suited for multi-object images.
arXiv Detail & Related papers (2020-03-16T21:40:09Z) - SPACE: Unsupervised Object-Oriented Scene Representation via Spatial
Attention and Decomposition [26.42139271058149]
We propose a generative latent variable model, called SPACE, that combines the best of spatial-attention and scene-mixture approaches.
We show through experiments on Atari and 3D-Rooms that SPACE achieves the above properties consistently in comparison to SPAIR, IODINE, and GENESIS.
arXiv Detail & Related papers (2020-01-08T07:44:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.