N2F2: Hierarchical Scene Understanding with Nested Neural Feature Fields
- URL: http://arxiv.org/abs/2403.10997v2
- Date: Sun, 28 Jul 2024 15:53:39 GMT
- Title: N2F2: Hierarchical Scene Understanding with Nested Neural Feature Fields
- Authors: Yash Bhalgat, Iro Laina, João F. Henriques, Andrew Zisserman, Andrea Vedaldi,
- Abstract summary: Nested Neural Feature Fields (N2F2) is a novel approach that employs hierarchical supervision to learn a single feature field.
We leverage a 2D class-agnostic segmentation model to provide semantically meaningful pixel groupings at arbitrary scales in the image space.
Our approach outperforms the state-of-the-art feature field distillation methods on tasks such as open-vocabulary 3D segmentation and localization.
- Score: 112.02885337510716
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Understanding complex scenes at multiple levels of abstraction remains a formidable challenge in computer vision. To address this, we introduce Nested Neural Feature Fields (N2F2), a novel approach that employs hierarchical supervision to learn a single feature field, wherein different dimensions within the same high-dimensional feature encode scene properties at varying granularities. Our method allows for a flexible definition of hierarchies, tailored to either the physical dimensions or semantics or both, thereby enabling a comprehensive and nuanced understanding of scenes. We leverage a 2D class-agnostic segmentation model to provide semantically meaningful pixel groupings at arbitrary scales in the image space, and query the CLIP vision-encoder to obtain language-aligned embeddings for each of these segments. Our proposed hierarchical supervision method then assigns different nested dimensions of the feature field to distill the CLIP embeddings using deferred volumetric rendering at varying physical scales, creating a coarse-to-fine representation. Extensive experiments show that our approach outperforms the state-of-the-art feature field distillation methods on tasks such as open-vocabulary 3D segmentation and localization, demonstrating the effectiveness of the learned nested feature field.
Related papers
- Dynamic Scene Understanding through Object-Centric Voxelization and Neural Rendering [57.895846642868904]
We present a 3D generative model named DynaVol-S for dynamic scenes that enables object-centric learning.
voxelization infers per-object occupancy probabilities at individual spatial locations.
Our approach integrates 2D semantic features to create 3D semantic grids, representing the scene through multiple disentangled voxel grids.
arXiv Detail & Related papers (2024-07-30T15:33:58Z) - Dense Multimodal Alignment for Open-Vocabulary 3D Scene Understanding [39.55810156545949]
We propose a Multimodal Alignment (DMA) framework to densely co-embed different modalities into a common space.
Our DMA method produces highly competitive open-vocabulary segmentation performance on various indoor and outdoor tasks.
arXiv Detail & Related papers (2024-07-13T05:39:17Z) - View-Consistent Hierarchical 3D Segmentation Using Ultrametric Feature Fields [52.08335264414515]
We learn a novel feature field within a Neural Radiance Field (NeRF) representing a 3D scene.
Our method takes view-inconsistent multi-granularity 2D segmentations as input and produces a hierarchy of 3D-consistent segmentations as output.
We evaluate our method and several baselines on synthetic datasets with multi-view images and multi-granular segmentation, showcasing improved accuracy and viewpoint-consistency.
arXiv Detail & Related papers (2024-05-30T04:14:58Z) - Exploiting Object-based and Segmentation-based Semantic Features for Deep Learning-based Indoor Scene Classification [0.5572976467442564]
The work described in this paper uses both semantic information, obtained from object detection, and semantic segmentation techniques.
A novel approach that uses a semantic segmentation mask to provide Hu-moments-based segmentation categories' shape characterization, designated by Hu-Moments Features (SHMFs) is proposed.
A three-main-branch network, designated by GOS$2$F$2$App, that exploits deep-learning-based global features, object-based features, and semantic segmentation-based features is also proposed.
arXiv Detail & Related papers (2024-04-11T13:37:51Z) - O2V-Mapping: Online Open-Vocabulary Mapping with Neural Implicit Representation [9.431926560072412]
We propose O2V-mapping, which utilizes voxel-based language and geometric features to create an open-vocabulary field.
Experiments on open-vocabulary object localization and semantic segmentation demonstrate that O2V-mapping achieves online construction of language scenes.
arXiv Detail & Related papers (2024-04-10T08:54:43Z) - GOV-NeSF: Generalizable Open-Vocabulary Neural Semantic Fields [50.68719394443926]
Generalizable Open-Vocabulary Neural Semantic Fields (GOV-NeSF) is a novel approach offering a generalizable implicit representation of 3D scenes with open-vocabulary semantics.
GOV-NeSF exhibits state-of-the-art performance in both 2D and 3D open-vocabulary semantic segmentation.
arXiv Detail & Related papers (2024-04-01T05:19:50Z) - Generalizable Entity Grounding via Assistance of Large Language Model [77.07759442298666]
We propose a novel approach to densely ground visual entities from a long caption.
We leverage a large multimodal model to extract semantic nouns, a class-a segmentation model to generate entity-level segmentation, and a multi-modal feature fusion module to associate each semantic noun with its corresponding segmentation mask.
arXiv Detail & Related papers (2024-02-04T16:06:05Z) - Panoptic Vision-Language Feature Fields [27.209602602110916]
We propose the first algorithm for open-vocabulary panoptic segmentation in 3D scenes.
Our algorithm learns a semantic feature field of the scene by distilling vision-language features from a pretrained 2D model.
Our method achieves panoptic segmentation performance similar to the state-of-the-art closed-set 3D systems on the HyperSim, ScanNet and Replica dataset.
arXiv Detail & Related papers (2023-09-11T13:41:27Z) - Cylindrical Convolutional Networks for Joint Object Detection and
Viewpoint Estimation [76.21696417873311]
We introduce a learnable module, cylindrical convolutional networks (CCNs), that exploit cylindrical representation of a convolutional kernel defined in the 3D space.
CCNs extract a view-specific feature through a view-specific convolutional kernel to predict object category scores at each viewpoint.
Our experiments demonstrate the effectiveness of the cylindrical convolutional networks on joint object detection and viewpoint estimation.
arXiv Detail & Related papers (2020-03-25T10:24:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.