Phased Data Augmentation for Training a Likelihood-Based Generative Model with Limited Data
- URL: http://arxiv.org/abs/2305.12681v2
- Date: Mon, 18 Mar 2024 06:34:01 GMT
- Title: Phased Data Augmentation for Training a Likelihood-Based Generative Model with Limited Data
- Authors: Yuta Mimura,
- Abstract summary: Generative models excel in creating realistic images, yet their dependency on extensive datasets for training presents significant challenges.
Current data-efficient methods largely focus on GAN architectures, leaving a gap in training other types of generative models.
"phased data augmentation" is a novel technique that addresses this gap by optimizing training in limited data scenarios without altering the inherent data distribution.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Generative models excel in creating realistic images, yet their dependency on extensive datasets for training presents significant challenges, especially in domains where data collection is costly or challenging. Current data-efficient methods largely focus on GAN architectures, leaving a gap in training other types of generative models. Our study introduces "phased data augmentation" as a novel technique that addresses this gap by optimizing training in limited data scenarios without altering the inherent data distribution. By limiting the augmentation intensity throughout the learning phases, our method enhances the model's ability to learn from limited data, thus maintaining fidelity. Applied to a model integrating PixelCNNs with VQ-VAE-2, our approach demonstrates superior performance in both quantitative and qualitative evaluations across diverse datasets. This represents an important step forward in the efficient training of likelihood-based models, extending the usefulness of data augmentation techniques beyond just GANs.
Related papers
- A Simple Background Augmentation Method for Object Detection with Diffusion Model [53.32935683257045]
In computer vision, it is well-known that a lack of data diversity will impair model performance.
We propose a simple yet effective data augmentation approach by leveraging advancements in generative models.
Background augmentation, in particular, significantly improves the models' robustness and generalization capabilities.
arXiv Detail & Related papers (2024-08-01T07:40:00Z) - Data Shapley in One Training Run [88.59484417202454]
Data Shapley provides a principled framework for attributing data's contribution within machine learning contexts.
Existing approaches require re-training models on different data subsets, which is computationally intensive.
This paper introduces In-Run Data Shapley, which addresses these limitations by offering scalable data attribution for a target model of interest.
arXiv Detail & Related papers (2024-06-16T17:09:24Z) - Data Augmentation for Multivariate Time Series Classification: An Experimental Study [1.5390962520179197]
Despite the limited size of these datasets, we achieved classification accuracy improvements in 10 out of 13 datasets using the Rocket and InceptionTime models.
This highlights the essential role of sufficient data in training effective models, paralleling the advancements seen in computer vision.
arXiv Detail & Related papers (2024-06-10T17:58:02Z) - Distribution-Aware Data Expansion with Diffusion Models [55.979857976023695]
We propose DistDiff, a training-free data expansion framework based on the distribution-aware diffusion model.
DistDiff consistently enhances accuracy across a diverse range of datasets compared to models trained solely on original data.
arXiv Detail & Related papers (2024-03-11T14:07:53Z) - Diffusion-Based Neural Network Weights Generation [80.89706112736353]
D2NWG is a diffusion-based neural network weights generation technique that efficiently produces high-performing weights for transfer learning.
Our method extends generative hyper-representation learning to recast the latent diffusion paradigm for neural network weights generation.
Our approach is scalable to large architectures such as large language models (LLMs), overcoming the limitations of current parameter generation techniques.
arXiv Detail & Related papers (2024-02-28T08:34:23Z) - One-Shot Federated Learning with Classifier-Guided Diffusion Models [44.604485649167216]
One-shot federated learning (OSFL) has gained attention in recent years due to its low communication cost.
In this paper, we explore the novel opportunities that diffusion models bring to OSFL and propose FedCADO.
FedCADO generates data that complies with clients' distributions and subsequently training the aggregated model on the server.
arXiv Detail & Related papers (2023-11-15T11:11:25Z) - Data-Centric Long-Tailed Image Recognition [49.90107582624604]
Long-tail models exhibit a strong demand for high-quality data.
Data-centric approaches aim to enhance both the quantity and quality of data to improve model performance.
There is currently a lack of research into the underlying mechanisms explaining the effectiveness of information augmentation.
arXiv Detail & Related papers (2023-11-03T06:34:37Z) - Phoenix: A Federated Generative Diffusion Model [6.09170287691728]
Training generative models on large centralized datasets can pose challenges in terms of data privacy, security, and accessibility.
This paper proposes a novel method for training a Denoising Diffusion Probabilistic Model (DDPM) across multiple data sources using Federated Learning (FL) techniques.
arXiv Detail & Related papers (2023-06-07T01:43:09Z) - Instance-Conditioned GAN Data Augmentation for Representation Learning [29.36473147430433]
We introduce DA_IC-GAN, a learnable data augmentation module that can be used off-the-shelf in conjunction with most state-of-the-art training recipes.
We show that DA_IC-GAN can boost accuracy to between 1%p and 2%p with the highest capacity models.
We additionally couple DA_IC-GAN with a self-supervised training recipe and show that we can also achieve an improvement of 1%p in accuracy in some settings.
arXiv Detail & Related papers (2023-03-16T22:45:43Z) - Regularizing Generative Adversarial Networks under Limited Data [88.57330330305535]
This work proposes a regularization approach for training robust GAN models on limited data.
We show a connection between the regularized loss and an f-divergence called LeCam-divergence, which we find is more robust under limited training data.
arXiv Detail & Related papers (2021-04-07T17:59:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.