Data Shapley in One Training Run
- URL: http://arxiv.org/abs/2406.11011v2
- Date: Sat, 29 Jun 2024 23:05:32 GMT
- Title: Data Shapley in One Training Run
- Authors: Jiachen T. Wang, Prateek Mittal, Dawn Song, Ruoxi Jia,
- Abstract summary: Data Shapley provides a principled framework for attributing data's contribution within machine learning contexts.
Existing approaches require re-training models on different data subsets, which is computationally intensive.
This paper introduces In-Run Data Shapley, which addresses these limitations by offering scalable data attribution for a target model of interest.
- Score: 88.59484417202454
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Data Shapley provides a principled framework for attributing data's contribution within machine learning contexts. However, existing approaches require re-training models on different data subsets, which is computationally intensive, foreclosing their application to large-scale models. Furthermore, they produce the same attribution score for any models produced by running the learning algorithm, meaning they cannot perform targeted attribution towards a specific model obtained from a single run of the algorithm. This paper introduces In-Run Data Shapley, which addresses these limitations by offering scalable data attribution for a target model of interest. In its most efficient implementation, our technique incurs negligible additional runtime compared to standard model training. This dramatic efficiency improvement makes it possible to perform data attribution for the foundation model pretraining stage for the first time. We present several case studies that offer fresh insights into pretraining data's contribution and discuss their implications for copyright in generative AI and pretraining data curation.
Related papers
- Optimize Cardinality Estimation Model Pretraining by Simplifying the Training Datasets [0.0]
We introduce a simplified training dataset, which has been reduced to a fraction of the size of existing pretraining datasets.
Sufficient experimental results demonstrate that the pre-trained cardinality estimator based on this simplified dataset can still achieve comparable performance to existing models in zero-shot setups.
arXiv Detail & Related papers (2025-02-20T08:06:16Z) - Scaling Laws for Forgetting during Finetuning with Pretraining Data Injection [37.65064631532493]
Finetuning a pretrained model to perform unsupervised prediction on data from a target domain presents two challenges.
We measure the efficiency of injecting pretraining data into the finetuning data mixture to avoid forgetting and mitigate overfitting.
A key practical takeaway from our study is that injecting as little as 1% of pretraining data in the finetuning data mixture prevents the model from forgetting the pretraining set.
arXiv Detail & Related papers (2025-02-09T21:44:27Z) - The interplay between domain specialization and model size: a case study in the legal domain [8.653321928148547]
We investigate the interplay between domain and model size during continual pre-training under compute-constrained scenarios.
Our goal is to identify a compute-efficient training regime for this scenario.
As model size increases, the compute-effectiveness gap between specialized and general models widens.
arXiv Detail & Related papers (2025-01-03T19:28:53Z) - Capturing the Temporal Dependence of Training Data Influence [100.91355498124527]
We formalize the concept of trajectory-specific leave-one-out influence, which quantifies the impact of removing a data point during training.
We propose data value embedding, a novel technique enabling efficient approximation of trajectory-specific LOO.
As data value embedding captures training data ordering, it offers valuable insights into model training dynamics.
arXiv Detail & Related papers (2024-12-12T18:28:55Z) - Attribute-to-Delete: Machine Unlearning via Datamodel Matching [65.13151619119782]
Machine unlearning -- efficiently removing a small "forget set" training data on a pre-divertrained machine learning model -- has recently attracted interest.
Recent research shows that machine unlearning techniques do not hold up in such a challenging setting.
arXiv Detail & Related papers (2024-10-30T17:20:10Z) - Forewarned is Forearmed: Leveraging LLMs for Data Synthesis through Failure-Inducing Exploration [90.41908331897639]
Large language models (LLMs) have significantly benefited from training on diverse, high-quality task-specific data.
We present a novel approach, ReverseGen, designed to automatically generate effective training samples.
arXiv Detail & Related papers (2024-10-22T06:43:28Z) - Accelerating Large Language Model Pretraining via LFR Pedagogy: Learn, Focus, and Review [50.78587571704713]
Learn-Focus-Review (LFR) is a dynamic training approach that adapts to the model's learning progress.
LFR tracks the model's learning performance across data blocks (sequences of tokens) and prioritizes revisiting challenging regions of the dataset.
Compared to baseline models trained on the full datasets, LFR consistently achieved lower perplexity and higher accuracy.
arXiv Detail & Related papers (2024-09-10T00:59:18Z) - Phased Data Augmentation for Training a Likelihood-Based Generative Model with Limited Data [0.0]
Generative models excel in creating realistic images, yet their dependency on extensive datasets for training presents significant challenges.
Current data-efficient methods largely focus on GAN architectures, leaving a gap in training other types of generative models.
"phased data augmentation" is a novel technique that addresses this gap by optimizing training in limited data scenarios without altering the inherent data distribution.
arXiv Detail & Related papers (2023-05-22T03:38:59Z) - Dataless Knowledge Fusion by Merging Weights of Language Models [51.8162883997512]
Fine-tuning pre-trained language models has become the prevalent paradigm for building downstream NLP models.
This creates a barrier to fusing knowledge across individual models to yield a better single model.
We propose a dataless knowledge fusion method that merges models in their parameter space.
arXiv Detail & Related papers (2022-12-19T20:46:43Z) - Self Training with Ensemble of Teacher Models [8.257085583227695]
In order to train robust deep learning models, large amounts of labelled data is required.
In the absence of such large repositories of labelled data, unlabeled data can be exploited for the same.
Semi-Supervised learning aims to utilize such unlabeled data for training classification models.
arXiv Detail & Related papers (2021-07-17T09:44:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.