Unsupervised Visible-Infrared Person ReID by Collaborative Learning with Neighbor-Guided Label Refinement
- URL: http://arxiv.org/abs/2305.12711v4
- Date: Sun, 03 Nov 2024 13:50:53 GMT
- Title: Unsupervised Visible-Infrared Person ReID by Collaborative Learning with Neighbor-Guided Label Refinement
- Authors: De Cheng, Xiaojian Huang, Nannan Wang, Lingfeng He, Zhihui Li, Xinbo Gao,
- Abstract summary: Unsupervised learning visible-infrared person re-identification (USL-VI-ReID) aims at learning modality-invariant features from unlabeled cross-modality dataset.
We propose a Dual Optimal Transport Label Assignment (DOTLA) framework to simultaneously assign the generated labels from one modality to its counterpart modality.
The proposed DOTLA mechanism formulates a mutual reinforcement and efficient solution to cross-modality data association, which could effectively reduce the side-effects of some insufficient and noisy label associations.
- Score: 53.044703127757295
- License:
- Abstract: Unsupervised learning visible-infrared person re-identification (USL-VI-ReID) aims at learning modality-invariant features from unlabeled cross-modality dataset, which is crucial for practical applications in video surveillance systems. The key to essentially address the USL-VI-ReID task is to solve the cross-modality data association problem for further heterogeneous joint learning. To address this issue, we propose a Dual Optimal Transport Label Assignment (DOTLA) framework to simultaneously assign the generated labels from one modality to its counterpart modality. The proposed DOTLA mechanism formulates a mutual reinforcement and efficient solution to cross-modality data association, which could effectively reduce the side-effects of some insufficient and noisy label associations. Besides, we further propose a cross-modality neighbor consistency guided label refinement and regularization module, to eliminate the negative effects brought by the inaccurate supervised signals, under the assumption that the prediction or label distribution of each example should be similar to its nearest neighbors. Extensive experimental results on the public SYSU-MM01 and RegDB datasets demonstrate the effectiveness of the proposed method, surpassing existing state-of-the-art approach by a large margin of 7.76% mAP on average, which even surpasses some supervised VI-ReID methods.
Related papers
- Unsupervised Visible-Infrared ReID via Pseudo-label Correction and Modality-level Alignment [23.310509459311046]
Unsupervised visible-infrared person re-identification (UVI-ReID) has recently gained great attention due to its potential for enhancing human detection in diverse environments without labeling.
Previous methods utilize intra-modality clustering and cross-modality feature matching to achieve UVI-ReID.
arXiv Detail & Related papers (2024-04-10T02:03:14Z) - Exploring Homogeneous and Heterogeneous Consistent Label Associations
for Unsupervised Visible-Infrared Person ReID [62.81466902601807]
Unsupervised visible-infrared person re-identification (USL-VI-ReID) aims to retrieve pedestrian images of the same identity from different modalities without annotations.
We introduce a Modality-Unified Label Transfer (MULT) module that simultaneously accounts for both homogeneous and heterogeneous fine-grained instance-level structures.
It models both homogeneous and heterogeneous affinities, leveraging them to define the inconsistency for the pseudo-labels and then minimize it, leading to pseudo-labels that maintain alignment across modalities and consistency within intra-modality structures.
arXiv Detail & Related papers (2024-02-01T15:33:17Z) - Multi-Memory Matching for Unsupervised Visible-Infrared Person Re-Identification [30.983346937558743]
Key challenges in USL-VI-ReID are to effectively generate pseudo-labels and establish pseudo-label correspondences.
We propose a Multi-Memory Matching framework for USL-VI-ReID.
Experiments on the public SYSU-MM01 and RegDB datasets demonstrate the reliability of the established cross-modality correspondences.
arXiv Detail & Related papers (2024-01-12T01:24:04Z) - Efficient Bilateral Cross-Modality Cluster Matching for Unsupervised Visible-Infrared Person ReID [56.573905143954015]
We propose a novel bilateral cluster matching-based learning framework to reduce the modality gap by matching cross-modality clusters.
Under such a supervisory signal, a Modality-Specific and Modality-Agnostic (MSMA) contrastive learning framework is proposed to align features jointly at a cluster-level.
Experiments on the public SYSU-MM01 and RegDB datasets demonstrate the effectiveness of the proposed method.
arXiv Detail & Related papers (2023-05-22T03:27:46Z) - Neighbour Consistency Guided Pseudo-Label Refinement for Unsupervised
Person Re-Identification [80.98291772215154]
Unsupervised person re-identification (ReID) aims at learning discriminative identity features for person retrieval without any annotations.
Recent advances accomplish this task by leveraging clustering-based pseudo labels.
We propose a Neighbour Consistency guided Pseudo Label Refinement framework.
arXiv Detail & Related papers (2022-11-30T09:39:57Z) - Group-aware Label Transfer for Domain Adaptive Person Re-identification [179.816105255584]
Unsupervised Adaptive Domain (UDA) person re-identification (ReID) aims at adapting the model trained on a labeled source-domain dataset to a target-domain dataset without any further annotations.
Most successful UDA-ReID approaches combine clustering-based pseudo-label prediction with representation learning and perform the two steps in an alternating fashion.
We propose a Group-aware Label Transfer (GLT) algorithm, which enables the online interaction and mutual promotion of pseudo-label prediction and representation learning.
arXiv Detail & Related papers (2021-03-23T07:57:39Z) - Dual-Refinement: Joint Label and Feature Refinement for Unsupervised
Domain Adaptive Person Re-Identification [51.98150752331922]
Unsupervised domain adaptive (UDA) person re-identification (re-ID) is a challenging task due to the missing of labels for the target domain data.
We propose a novel approach, called Dual-Refinement, that jointly refines pseudo labels at the off-line clustering phase and features at the on-line training phase.
Our method outperforms the state-of-the-art methods by a large margin.
arXiv Detail & Related papers (2020-12-26T07:35:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.