Multi-Memory Matching for Unsupervised Visible-Infrared Person Re-Identification
- URL: http://arxiv.org/abs/2401.06825v2
- Date: Mon, 29 Jul 2024 09:40:11 GMT
- Title: Multi-Memory Matching for Unsupervised Visible-Infrared Person Re-Identification
- Authors: Jiangming Shi, Xiangbo Yin, Yeyun Chen, Yachao Zhang, Zhizhong Zhang, Yuan Xie, Yanyun Qu,
- Abstract summary: Key challenges in USL-VI-ReID are to effectively generate pseudo-labels and establish pseudo-label correspondences.
We propose a Multi-Memory Matching framework for USL-VI-ReID.
Experiments on the public SYSU-MM01 and RegDB datasets demonstrate the reliability of the established cross-modality correspondences.
- Score: 30.983346937558743
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Unsupervised visible-infrared person re-identification (USL-VI-ReID) is a promising yet challenging retrieval task. The key challenges in USL-VI-ReID are to effectively generate pseudo-labels and establish pseudo-label correspondences across modalities without relying on any prior annotations. Recently, clustered pseudo-label methods have gained more attention in USL-VI-ReID. However, previous methods fell short of fully exploiting the individual nuances, as they simply utilized a single memory that represented an identity to establish cross-modality correspondences, resulting in ambiguous cross-modality correspondences. To address the problem, we propose a Multi-Memory Matching (MMM) framework for USL-VI-ReID. We first design a Cross-Modality Clustering (CMC) module to generate the pseudo-labels through clustering together both two modality samples. To associate cross-modality clustered pseudo-labels, we design a Multi-Memory Learning and Matching (MMLM) module, ensuring that optimization explicitly focuses on the nuances of individual perspectives and establishes reliable cross-modality correspondences. Finally, we design a Soft Cluster-level Alignment (SCA) module to narrow the modality gap while mitigating the effect of noise pseudo-labels through a soft many-to-many alignment strategy. Extensive experiments on the public SYSU-MM01 and RegDB datasets demonstrate the reliability of the established cross-modality correspondences and the effectiveness of our MMM. The source codes will be released.
Related papers
Err
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.