Mitigating ML Model Decay in Continuous Integration with Data Drift
Detection: An Empirical Study
- URL: http://arxiv.org/abs/2305.12736v2
- Date: Mon, 17 Jul 2023 06:36:58 GMT
- Title: Mitigating ML Model Decay in Continuous Integration with Data Drift
Detection: An Empirical Study
- Authors: Ali Kazemi Arani, Triet Huynh Minh Le, Mansooreh Zahedi and Muhammad
Ali Babar
- Abstract summary: This study aims to investigate the performance of using data drift detection techniques for automatically detecting the retraining points for ML models for TCP in CI environments.
We employed the Hellinger distance to identify changes in both the values and distribution of input data and leveraged these changes as retraining points for the ML model.
Our experimental evaluation of the Hellinger distance-based method demonstrated its efficacy and efficiency in detecting retraining points and reducing the associated costs.
- Score: 7.394099294390271
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Background: Machine Learning (ML) methods are being increasingly used for
automating different activities, e.g., Test Case Prioritization (TCP), of
Continuous Integration (CI). However, ML models need frequent retraining as a
result of changes in the CI environment, more commonly known as data drift.
Also, continuously retraining ML models consume a lot of time and effort.
Hence, there is an urgent need of identifying and evaluating suitable
approaches that can help in reducing the retraining efforts and time for ML
models used for TCP in CI environments. Aims: This study aims to investigate
the performance of using data drift detection techniques for automatically
detecting the retraining points for ML models for TCP in CI environments
without requiring detailed knowledge of the software projects. Method: We
employed the Hellinger distance to identify changes in both the values and
distribution of input data and leveraged these changes as retraining points for
the ML model. We evaluated the efficacy of this method on multiple datasets and
compared the APFDc and NAPFD evaluation metrics against models that were
regularly retrained, with careful consideration of the statistical methods.
Results: Our experimental evaluation of the Hellinger distance-based method
demonstrated its efficacy and efficiency in detecting retraining points and
reducing the associated costs. However, the performance of this method may vary
depending on the dataset. Conclusions: Our findings suggest that data drift
detection methods can assist in identifying retraining points for ML models in
CI environments, while significantly reducing the required retraining time.
These methods can be helpful for practitioners who lack specialized knowledge
of software projects, enabling them to maintain ML model accuracy.
Related papers
- SUDS: A Strategy for Unsupervised Drift Sampling [0.5437605013181142]
Supervised machine learning encounters concept drift, where the data distribution changes over time, degrading performance.
We present the Strategy for Drift Sampling (SUDS), a novel method that selects homogeneous samples for retraining using existing drift detection algorithms.
Our results demonstrate the efficacy of SUDS in optimizing labeled data use in dynamic environments.
arXiv Detail & Related papers (2024-11-05T10:55:29Z) - Unlearning with Control: Assessing Real-world Utility for Large Language Model Unlearning [97.2995389188179]
Recent research has begun to approach large language models (LLMs) unlearning via gradient ascent (GA)
Despite their simplicity and efficiency, we suggest that GA-based methods face the propensity towards excessive unlearning.
We propose several controlling methods that can regulate the extent of excessive unlearning.
arXiv Detail & Related papers (2024-06-13T14:41:00Z) - Distilled Datamodel with Reverse Gradient Matching [74.75248610868685]
We introduce an efficient framework for assessing data impact, comprising offline training and online evaluation stages.
Our proposed method achieves comparable model behavior evaluation while significantly speeding up the process compared to the direct retraining method.
arXiv Detail & Related papers (2024-04-22T09:16:14Z) - EsaCL: Efficient Continual Learning of Sparse Models [10.227171407348326]
Key challenge in the continual learning setting is to efficiently learn a sequence of tasks without forgetting how to perform previously learned tasks.
We propose a new method for efficient continual learning of sparse models (EsaCL) that can automatically prune redundant parameters without adversely impacting the model's predictive power.
arXiv Detail & Related papers (2024-01-11T04:59:44Z) - Uncovering Drift in Textual Data: An Unsupervised Method for Detecting
and Mitigating Drift in Machine Learning Models [9.035254826664273]
Drift in machine learning refers to the phenomenon where the statistical properties of data or context, in which the model operates, change over time leading to a decrease in its performance.
In our proposed unsupervised drift detection method, we follow a two step process. Our first step involves encoding a sample of production data as the target distribution, and the model training data as the reference distribution.
Our method also identifies the subset of production data that is the root cause of the drift.
The models retrained using these identified high drift samples show improved performance on online customer experience quality metrics.
arXiv Detail & Related papers (2023-09-07T16:45:42Z) - Meta-Learning for Airflow Simulations with Graph Neural Networks [3.52359746858894]
We present a meta-learning approach to enhance the performance of learned models on out-of-distribution (OoD) samples.
Specifically, we set the airflow simulation in CFD over various airfoils as a meta-learning problem, where each set of examples defined on a single airfoil shape is treated as a separate task.
We experimentally demonstrate the efficiency of the proposed approach for improving the OoD generalization performance of learned models.
arXiv Detail & Related papers (2023-06-18T19:25:13Z) - Value function estimation using conditional diffusion models for control [62.27184818047923]
We propose a simple algorithm called Diffused Value Function (DVF)
It learns a joint multi-step model of the environment-robot interaction dynamics using a diffusion model.
We show how DVF can be used to efficiently capture the state visitation measure for multiple controllers.
arXiv Detail & Related papers (2023-06-09T18:40:55Z) - On the Costs and Benefits of Adopting Lifelong Learning for Software
Analytics -- Empirical Study on Brown Build and Risk Prediction [17.502553991799832]
This paper evaluates the use of lifelong learning (LL) for industrial use cases at Ubisoft.
LL is used to continuously build and maintain ML-based software analytics tools using an incremental learner that progressively updates the old model using new data.
arXiv Detail & Related papers (2023-05-16T21:57:16Z) - Automated Machine Learning Techniques for Data Streams [91.3755431537592]
This paper surveys the state-of-the-art open-source AutoML tools, applies them to data collected from streams, and measures how their performance changes over time.
The results show that off-the-shelf AutoML tools can provide satisfactory results but in the presence of concept drift, detection or adaptation techniques have to be applied to maintain the predictive accuracy over time.
arXiv Detail & Related papers (2021-06-14T11:42:46Z) - DEALIO: Data-Efficient Adversarial Learning for Imitation from
Observation [57.358212277226315]
In imitation learning from observation IfO, a learning agent seeks to imitate a demonstrating agent using only observations of the demonstrated behavior without access to the control signals generated by the demonstrator.
Recent methods based on adversarial imitation learning have led to state-of-the-art performance on IfO problems, but they typically suffer from high sample complexity due to a reliance on data-inefficient, model-free reinforcement learning algorithms.
This issue makes them impractical to deploy in real-world settings, where gathering samples can incur high costs in terms of time, energy, and risk.
We propose a more data-efficient IfO algorithm
arXiv Detail & Related papers (2021-03-31T23:46:32Z) - Transfer Learning without Knowing: Reprogramming Black-box Machine
Learning Models with Scarce Data and Limited Resources [78.72922528736011]
We propose a novel approach, black-box adversarial reprogramming (BAR), that repurposes a well-trained black-box machine learning model.
Using zeroth order optimization and multi-label mapping techniques, BAR can reprogram a black-box ML model solely based on its input-output responses.
BAR outperforms state-of-the-art methods and yields comparable performance to the vanilla adversarial reprogramming method.
arXiv Detail & Related papers (2020-07-17T01:52:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.