論文の概要: Quantifying the effect of X-ray scattering for data generation in real-time defect detection
- arxiv url: http://arxiv.org/abs/2305.12822v2
- Date: Wed, 21 Aug 2024 09:28:04 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-22 23:25:53.929955
- Title: Quantifying the effect of X-ray scattering for data generation in real-time defect detection
- Title(参考訳): リアルタイム欠陥検出におけるデータ生成におけるX線散乱の影響の定量化
- Authors: Vladyslav Andriiashen, Robert van Liere, Tristan van Leeuwen, K. Joost Batenburg,
- Abstract要約: インライン検出は高度に正確で堅牢で高速なアルゴリズムを必要とする。
DCNNは、大量のラベル付きデータが利用できる場合、これらの要件を満たす。
X線散乱はシミュレーションするのに計算コストがかかることが知られている。
- 参考スコア(独自算出の注目度): 1.124958340749622
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Background: X-ray imaging is widely used for the non-destructive detection of defects in industrial products on a conveyor belt. In-line detection requires highly accurate, robust, and fast algorithms. Deep Convolutional Neural Networks (DCNNs) satisfy these requirements when a large amount of labeled data is available. To overcome the challenge of collecting these data, different methods of X-ray image generation are considered. Objective: Depending on the desired degree of similarity to real data, different physical effects should either be simulated or can be ignored. X-ray scattering is known to be computationally expensive to simulate, and this effect can greatly affect the accuracy of a generated X-ray image. We aim to quantitatively evaluate the effect of scattering on defect detection. Methods: Monte-Carlo simulation is used to generate X-ray scattering distribution. DCNNs are trained on the data with and without scattering and applied to the same test datasets. Probability of Detection (POD) curves are computed to compare their performance, characterized by the size of the smallest detectable defect. Results: We apply the methodology to a model problem of defect detection in cylinders. When trained on data without scattering, DCNNs reliably detect defects larger than 1.3 mm, and using data with scattering improves performance by less than 5%. If the analysis is performed on the cases with large scattering-to-primary ratio ($1 < SPR < 5$), the difference in performance could reach 15% (approx. 0.4 mm). Conclusion: Excluding the scattering signal from the training data has the largest effect on the smallest detectable defects, and the difference decreases for larger defects. The scattering-to-primary ratio has a significant effect on detection performance and the required accuracy of data generation.
- Abstract(参考訳): 背景: コンベアベルト上の工業製品の欠陥の非破壊検出にX線イメージングが広く用いられている。
インライン検出は高度に正確で堅牢で高速なアルゴリズムを必要とする。
ディープ畳み込みニューラルネットワーク(DCNN)は、大量のラベル付きデータが利用可能である場合に、これらの要件を満たす。
これらのデータ収集の課題を克服するために、X線画像生成の異なる方法を検討する。
目的: 実データとの望ましい類似度に応じて、異なる物理効果はシミュレートされるか無視されるべきである。
X線散乱は計算コストがかかることで知られており、この効果は生成されたX線画像の精度に大きな影響を与える。
本研究の目的は,散乱が欠陥検出に与える影響を定量的に評価することである。
方法: モンテカルロシミュレーションを用いてX線散乱分布を生成する。
DCNNは散乱することなくデータをトレーニングし、同じテストデータセットに適用する。
検出の確率(POD)曲線は、最小の検出可能な欠陥の大きさを特徴とする、それらの性能を比較するために計算される。
結果: この手法をシリンダ内の欠陥検出のモデル問題に適用する。
散乱のないデータでトレーニングを行うと、DCNNは1.3mm以上の欠陥を確実に検出し、散乱を伴うデータを使用することで性能を5%以下に向上する。
もし大きな散乱-一次比(1 < SPR < 5$)の場合に分析を行えば、性能の違いは15%(約0.4 mm)に達する可能性がある。
結論: トレーニングデータから散乱信号を除くと, 検出可能な最小の欠陥に対して最大の影響があり, より大きな欠陥に対して差が減少する。
散乱-一次比は、検出性能とデータ生成に必要な精度に有意な影響を及ぼす。
関連論文リスト
- Efficient Data-Sketches and Fine-Tuning for Early Detection of Distributional Drift in Medical Imaging [5.1358645354733765]
本稿では,CT-Scan医療画像における分布のドリフトを検出するための,高精度かつ高感度なアプローチを提案する。
我々は,リアルタイムな異常検出のための頑健なライブラリモデルを開発し,画像の効率的な比較を可能にした。
乳がん画像から関連する特徴を抽出するために,視力変換器の事前訓練モデルを微調整した。
論文 参考訳(メタデータ) (2024-08-15T23:46:37Z) - AnomalyDiffusion: Few-Shot Anomaly Image Generation with Diffusion Model [59.08735812631131]
製造業において異常検査が重要な役割を担っている。
既存の異常検査手法は、異常データが不足しているため、その性能に制限がある。
本稿では,新しい拡散型マイクロショット異常生成モデルであるAnomalyDiffusionを提案する。
論文 参考訳(メタデータ) (2023-12-10T05:13:40Z) - AnoDODE: Anomaly Detection with Diffusion ODE [0.0]
異常検出は、データセットの大部分から著しく逸脱する非定型的なデータサンプルを特定するプロセスである。
医用画像から抽出した特徴量の密度を推定し,拡散モードに基づく新しい異常検出手法を提案する。
提案手法は異常を識別するだけでなく,画像レベルと画素レベルでの解釈性も提供する。
論文 参考訳(メタデータ) (2023-10-10T08:44:47Z) - The role of noise in denoising models for anomaly detection in medical
images [62.0532151156057]
病理脳病変は脳画像に多彩な外観を示す。
正規データのみを用いた教師なし異常検出手法が提案されている。
空間分解能の最適化と雑音の大きさの最適化により,異なるモデル学習体制の性能が向上することを示す。
論文 参考訳(メタデータ) (2023-01-19T21:39:38Z) - Graph Neural Networks with Trainable Adjacency Matrices for Fault
Diagnosis on Multivariate Sensor Data [69.25738064847175]
各センサの信号の挙動を別々に検討し,相互の相関関係と隠れ関係を考慮する必要がある。
グラフノードは、異なるセンサーからのデータとして表現することができ、エッジは、これらのデータの影響を互いに表示することができる。
グラフニューラルネットワークのトレーニング中にグラフを構築する方法が提案されている。これにより、センサー間の依存関係が事前に分かっていないデータ上でモデルをトレーニングすることができる。
論文 参考訳(メタデータ) (2022-10-20T11:03:21Z) - StRegA: Unsupervised Anomaly Detection in Brain MRIs using a Compact
Context-encoding Variational Autoencoder [48.2010192865749]
教師なし異常検出(UAD)は、健康な被験者の異常なデータセットからデータ分布を学習し、分布サンプルの抽出に応用することができる。
本研究では,コンテクストエンコーディング(context-encoding)VAE(ceVAE)モデルのコンパクトバージョンと,前処理と後処理のステップを組み合わせて,UADパイプライン(StRegA)を作成することを提案する。
提案したパイプラインは、BraTSデータセットのT2w画像と0.859$pm$0.112の腫瘍を検出しながら、Diceスコアが0.642$pm$0.101に達した。
論文 参考訳(メタデータ) (2022-01-31T14:27:35Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
ディープラーニングは、病気の識別性能を改善するための最も強力なコンピュータ支援診断技術となった。
胸部X線撮影では、大規模データの注釈付けには専門的なドメイン知識が必要で、時間を要する。
本論文では、単一モデルにおける疾患同定性能を改善するために、複数対1の分布学習(MODL)とK-nearest neighbor smoothing(KNNS)手法を提案する。
論文 参考訳(メタデータ) (2021-02-26T02:29:30Z) - The Deep Radial Basis Function Data Descriptor (D-RBFDD) Network: A
One-Class Neural Network for Anomaly Detection [7.906608953906889]
異常検出は機械学習において難しい問題である。
放射状基底関数データ記述子(rbfdd)ネットワークは異常検出に有効なソリューションである。
本稿では,RBFDDネットワークを改良して深層一級分類器に変換する手法について検討する。
論文 参考訳(メタデータ) (2021-01-29T15:15:17Z) - Improved Slice-wise Tumour Detection in Brain MRIs by Computing
Dissimilarities between Latent Representations [68.8204255655161]
磁気共鳴画像(MRI)の異常検出は教師なし手法で行うことができる。
本研究では,変分オートエンコーダの潜伏空間における相似関数の計算に基づいて,腫瘍検出のためのスライスワイズ半教師法を提案する。
本研究では,高解像度画像上でのモデルをトレーニングし,再現の質を向上させることにより,異なるベースラインに匹敵する結果が得られることを示す。
論文 参考訳(メタデータ) (2020-07-24T14:02:09Z) - X-ray Photon-Counting Data Correction through Deep Learning [3.535670189300134]
深層ニューラルネットワークを用いたPCDデータ補正手法を提案する。
本研究ではまず,電荷分割とパルス蓄積効果を取り入れた完全シミュレーションモデルを構築した。
シミュレーションされたPCDデータと地上の真理のデータは、PCDデータ修正のために特別に設計されたディープ・敵ネットワークに送られる。
論文 参考訳(メタデータ) (2020-07-06T23:29:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。