論文の概要: Flying Adversarial Patches: Manipulating the Behavior of Deep
Learning-based Autonomous Multirotors
- arxiv url: http://arxiv.org/abs/2305.12859v1
- Date: Mon, 22 May 2023 09:35:21 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-23 17:12:33.253745
- Title: Flying Adversarial Patches: Manipulating the Behavior of Deep
Learning-based Autonomous Multirotors
- Title(参考訳): flying adversarial patch: ディープラーニングによる自律的マルチロータの動作操作
- Authors: Pia Hanfeld and Marina M.-C. H\"ohne and Michael Bussmann and Wolfgang
H\"onig
- Abstract要約: 敵攻撃は、トレーニング領域外の入力画像に適用した場合、ニューラルネットワークの驚くべき結果を利用する。
本研究では,他の飛行ロボットに画像が装着され,被害者のマルチロータの視野内に配置されるフライング対向パッチについて紹介する。
効果的な攻撃法として、入力画像における敵パッチとその位置を同時に最適化する3つの手法を比較する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Autonomous flying robots, e.g. multirotors, often rely on a neural network
that makes predictions based on a camera image. These deep learning (DL) models
can compute surprising results if applied to input images outside the training
domain. Adversarial attacks exploit this fault, for example, by computing small
images, so-called adversarial patches, that can be placed in the environment to
manipulate the neural network's prediction. We introduce flying adversarial
patches, where an image is mounted on another flying robot and therefore can be
placed anywhere in the field of view of a victim multirotor. For an effective
attack, we compare three methods that simultaneously optimize the adversarial
patch and its position in the input image. We perform an empirical validation
on a publicly available DL model and dataset for autonomous multirotors.
Ultimately, our attacking multirotor would be able to gain full control over
the motions of the victim multirotor.
- Abstract(参考訳): マルチローターのような自律飛行ロボットは、しばしばカメラ画像に基づいて予測を行うニューラルネットワークに依存している。
これらのディープラーニング(DL)モデルは、トレーニング領域外の入力画像に適用した場合、驚くべき結果を計算することができる。
敵の攻撃は、例えば、ニューラルネットワークの予測を操作するために環境に配置される小さなイメージ、いわゆる敵パッチを計算することで、この欠陥を悪用する。
本研究では,他の飛行ロボットに画像が装着され,被害者のマルチロータの視野内に配置されるフライング対向パッチについて紹介する。
効果的なアタックを行うために,攻撃パッチと入力画像の位置を同時に最適化する3つの手法を比較した。
我々は,自律型マルチロータ用DLモデルとデータセットの実証検証を行った。
最終的に、攻撃するマルチロータは、被害者のマルチロータの動きを完全に制御できる。
関連論文リスト
- Protecting Feed-Forward Networks from Adversarial Attacks Using Predictive Coding [0.20718016474717196]
逆の例は、機械学習(ML)モデルが誤りを犯すように設計された、修正された入力イメージである。
本研究では,敵防衛のための補助的なステップとして,予測符号化ネットワーク(PCnet)を用いた実用的で効果的な手法を提案する。
論文 参考訳(メタデータ) (2024-10-31T21:38:05Z) - Kidnapping Deep Learning-based Multirotors using Optimized Flying
Adversarial Patches [0.0]
我々は、複数の画像が少なくとも1つの飛行ロボットに搭載された飛行対向パッチを紹介した。
攻撃ロボットを導入することにより、システムは敵のマルチロボットシステムに拡張される。
提案手法は, 敵パッチ数に比例して拡張可能であることを示す。
論文 参考訳(メタデータ) (2023-08-01T07:38:31Z) - Robot Learning with Sensorimotor Pre-training [98.7755895548928]
ロボット工学のための自己教師型感覚運動器事前学習手法を提案する。
我々のモデルはRTTと呼ばれ、センサモレータトークンのシーケンスで動作するトランスフォーマーである。
感覚運動の事前学習は、ゼロからトレーニングを一貫して上回り、優れたスケーリング特性を持ち、さまざまなタスク、環境、ロボット間での移動を可能にしている。
論文 参考訳(メタデータ) (2023-06-16T17:58:10Z) - Learning When to Use Adaptive Adversarial Image Perturbations against
Autonomous Vehicles [0.0]
物体検出のためのディープニューラルネットワーク(DNN)モデルは、逆画像摂動の影響を受けやすい。
敵の摂動を発生させる攻撃者の能力をモニタする多段階最適化フレームワークを提案する。
本手法では,攻撃者が状態推定に精通した時刻を監視しながら,リアルタイムに画像攻撃を発生させる能力を示す。
論文 参考訳(メタデータ) (2022-12-28T02:36:58Z) - CARLA-GeAR: a Dataset Generator for a Systematic Evaluation of
Adversarial Robustness of Vision Models [61.68061613161187]
本稿では,合成データセットの自動生成ツールであるCARLA-GeARについて述べる。
このツールは、Python APIを使用して、CARLAシミュレータ上に構築されており、自律運転のコンテキストにおいて、いくつかのビジョンタスク用のデータセットを生成することができる。
本稿では,CARLA-GeARで生成されたデータセットが,現実世界の敵防衛のベンチマークとして今後どのように利用されるかを示す。
論文 参考訳(メタデータ) (2022-06-09T09:17:38Z) - Inconspicuous Adversarial Patches for Fooling Image Recognition Systems
on Mobile Devices [8.437172062224034]
敵パッチと呼ばれる敵の例の変種は、強力な攻撃能力のために研究者の注意を引き付けている。
1枚の画像で逆パッチを生成する手法を提案する。
提案手法は,ホワイトボックス設定における強力な攻撃能力とブラックボックス設定における優れた転送性を示す。
論文 参考訳(メタデータ) (2021-06-29T09:39:34Z) - Error Diffusion Halftoning Against Adversarial Examples [85.11649974840758]
敵対的な例には、深いニューラルネットワークを誤った予測にだますことができる慎重に作られた摂動が含まれます。
誤り拡散のハーフトン化に基づく新しい画像変換防御を提案し、逆転の例に対して防御するための逆転訓練と組み合わせます。
論文 参考訳(メタデータ) (2021-01-23T07:55:02Z) - Exploring Adversarial Robustness of Multi-Sensor Perception Systems in
Self Driving [87.3492357041748]
本稿では,敵物体をホスト車両の上に配置することで,マルチセンサ検出の実用的感受性を示す。
実験の結果, 攻撃が成功した原因は主に画像の特徴が損なわれやすいことが判明した。
よりロバストなマルチモーダル知覚システムに向けて,特徴分断を伴う敵対的訓練が,このような攻撃に対するロバスト性を大幅に高めることを示す。
論文 参考訳(メタデータ) (2021-01-17T21:15:34Z) - Online Alternate Generator against Adversarial Attacks [144.45529828523408]
ディープラーニングモデルは、実際の画像に準知覚可能なノイズを加えることによって合成される敵の例に非常に敏感である。
対象ネットワークのパラメータをアクセスしたり変更したりする必要のない,ポータブルな防御手法であるオンライン代替ジェネレータを提案する。
提案手法は,入力画像のスクラッチから別の画像をオンライン合成することで,対向雑音を除去・破壊する代わりに機能する。
論文 参考訳(メタデータ) (2020-09-17T07:11:16Z) - Dual Manifold Adversarial Robustness: Defense against Lp and non-Lp
Adversarial Attacks [154.31827097264264]
敵の訓練は、境界Lpノルムを持つ攻撃脅威モデルに対する一般的な防衛戦略である。
本稿では,2次元マニフォールド逆行訓練(DMAT)を提案する。
我々のDMATは、通常の画像の性能を改善し、Lp攻撃に対する標準的な敵の訓練と同等の堅牢性を達成する。
論文 参考訳(メタデータ) (2020-09-05T06:00:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。