Prediction Risk and Estimation Risk of the Ridgeless Least Squares Estimator under General Assumptions on Regression Errors
- URL: http://arxiv.org/abs/2305.12883v3
- Date: Thu, 13 Jun 2024 01:16:15 GMT
- Title: Prediction Risk and Estimation Risk of the Ridgeless Least Squares Estimator under General Assumptions on Regression Errors
- Authors: Sungyoon Lee, Sokbae Lee,
- Abstract summary: We explore prediction risk as well as estimation risk under more general regression error assumptions.
Our findings suggest that the benefits of over parameterization can extend to time series, panel and grouped data.
- Score: 10.857775300638831
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In recent years, there has been a significant growth in research focusing on minimum $\ell_2$ norm (ridgeless) interpolation least squares estimators. However, the majority of these analyses have been limited to an unrealistic regression error structure, assuming independent and identically distributed errors with zero mean and common variance. In this paper, we explore prediction risk as well as estimation risk under more general regression error assumptions, highlighting the benefits of overparameterization in a more realistic setting that allows for clustered or serial dependence. Notably, we establish that the estimation difficulties associated with the variance components of both risks can be summarized through the trace of the variance-covariance matrix of the regression errors. Our findings suggest that the benefits of overparameterization can extend to time series, panel and grouped data.
Related papers
- Generalization Error of the Tilted Empirical Risk [17.48212403081267]
The generalization error (risk) of a supervised statistical learning algorithm quantifies its prediction ability on previously unseen data.
Inspired by exponential tilting, Li et al. (2021) proposed the tilted empirical risk as a non-linear risk metric for machine learning applications.
arXiv Detail & Related papers (2024-09-28T18:31:51Z) - Risk and cross validation in ridge regression with correlated samples [72.59731158970894]
We provide training examples for the in- and out-of-sample risks of ridge regression when the data points have arbitrary correlations.
We further extend our analysis to the case where the test point has non-trivial correlations with the training set, setting often encountered in time series forecasting.
We validate our theory across a variety of high dimensional data.
arXiv Detail & Related papers (2024-08-08T17:27:29Z) - Selective Nonparametric Regression via Testing [54.20569354303575]
We develop an abstention procedure via testing the hypothesis on the value of the conditional variance at a given point.
Unlike existing methods, the proposed one allows to account not only for the value of the variance itself but also for the uncertainty of the corresponding variance predictor.
arXiv Detail & Related papers (2023-09-28T13:04:11Z) - On the Variance, Admissibility, and Stability of Empirical Risk
Minimization [80.26309576810844]
Empirical Risk Minimization (ERM) with squared loss may attain minimax suboptimal error rates.
We show that under mild assumptions, the suboptimality of ERM must be due to large bias rather than variance.
We also show that our estimates imply stability of ERM, complementing the main result of Caponnetto and Rakhlin (2006) for non-Donsker classes.
arXiv Detail & Related papers (2023-05-29T15:25:48Z) - Errors-in-variables Fr\'echet Regression with Low-rank Covariate
Approximation [2.1756081703276]
Fr'echet regression has emerged as a promising approach for regression analysis involving non-Euclidean response variables.
Our proposed framework combines the concepts of global Fr'echet regression and principal component regression, aiming to improve the efficiency and accuracy of the regression estimator.
arXiv Detail & Related papers (2023-05-16T08:37:54Z) - Mitigating multiple descents: A model-agnostic framework for risk
monotonization [84.6382406922369]
We develop a general framework for risk monotonization based on cross-validation.
We propose two data-driven methodologies, namely zero- and one-step, that are akin to bagging and boosting.
arXiv Detail & Related papers (2022-05-25T17:41:40Z) - Learning Probabilistic Ordinal Embeddings for Uncertainty-Aware
Regression [91.3373131262391]
Uncertainty is the only certainty there is.
Traditionally, the direct regression formulation is considered and the uncertainty is modeled by modifying the output space to a certain family of probabilistic distributions.
How to model the uncertainty within the present-day technologies for regression remains an open issue.
arXiv Detail & Related papers (2021-03-25T06:56:09Z) - The Risks of Invariant Risk Minimization [52.7137956951533]
Invariant Risk Minimization is an objective based on the idea for learning deep, invariant features of data.
We present the first analysis of classification under the IRM objective--as well as these recently proposed alternatives--under a fairly natural and general model.
We show that IRM can fail catastrophically unless the test data are sufficiently similar to the training distribution--this is precisely the issue that it was intended to solve.
arXiv Detail & Related papers (2020-10-12T14:54:32Z) - Interpolating Predictors in High-Dimensional Factor Regression [2.1055643409860743]
This work studies finite-sample properties of the risk of the minimum-norm interpolating predictor in high-dimensional regression models.
We show that the min-norm interpolating predictor can have similar risk to predictors based on principal components regression and ridge regression, and can improve over LASSO based predictors, in the high-dimensional regime.
arXiv Detail & Related papers (2020-02-06T22:08:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.