Errors-in-variables Fr\'echet Regression with Low-rank Covariate
Approximation
- URL: http://arxiv.org/abs/2305.09282v2
- Date: Tue, 24 Oct 2023 20:10:12 GMT
- Title: Errors-in-variables Fr\'echet Regression with Low-rank Covariate
Approximation
- Authors: Kyunghee Han and Dogyoon Song
- Abstract summary: Fr'echet regression has emerged as a promising approach for regression analysis involving non-Euclidean response variables.
Our proposed framework combines the concepts of global Fr'echet regression and principal component regression, aiming to improve the efficiency and accuracy of the regression estimator.
- Score: 2.1756081703276
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Fr\'echet regression has emerged as a promising approach for regression
analysis involving non-Euclidean response variables. However, its practical
applicability has been hindered by its reliance on ideal scenarios with
abundant and noiseless covariate data. In this paper, we present a novel
estimation method that tackles these limitations by leveraging the low-rank
structure inherent in the covariate matrix. Our proposed framework combines the
concepts of global Fr\'echet regression and principal component regression,
aiming to improve the efficiency and accuracy of the regression estimator. By
incorporating the low-rank structure, our method enables more effective
modeling and estimation, particularly in high-dimensional and
errors-in-variables regression settings. We provide a theoretical analysis of
the proposed estimator's large-sample properties, including a comprehensive
rate analysis of bias, variance, and additional variations due to measurement
errors. Furthermore, our numerical experiments provide empirical evidence that
supports the theoretical findings, demonstrating the superior performance of
our approach. Overall, this work introduces a promising framework for
regression analysis of non-Euclidean variables, effectively addressing the
challenges associated with limited and noisy covariate data, with potential
applications in diverse fields.
Related papers
- Multivariate root-n-consistent smoothing parameter free matching estimators and estimators of inverse density weighted expectations [51.000851088730684]
We develop novel modifications of nearest-neighbor and matching estimators which converge at the parametric $sqrt n $-rate.
We stress that our estimators do not involve nonparametric function estimators and in particular do not rely on sample-size dependent parameters smoothing.
arXiv Detail & Related papers (2024-07-11T13:28:34Z) - Predictability Analysis of Regression Problems via Conditional Entropy Estimations [1.8913544072080544]
Conditional entropy estimators are developed to assess predictability in regression problems.
Experiments on synthesized and real-world datasets demonstrate the robustness and utility of these estimators.
arXiv Detail & Related papers (2024-06-06T07:59:19Z) - Distributed High-Dimensional Quantile Regression: Estimation Efficiency and Support Recovery [0.0]
We focus on distributed estimation and support recovery for high-dimensional linear quantile regression.
We transform the original quantile regression into the least-squares optimization.
An efficient algorithm is developed, which enjoys high computation and communication efficiency.
arXiv Detail & Related papers (2024-05-13T08:32:22Z) - Selective Nonparametric Regression via Testing [54.20569354303575]
We develop an abstention procedure via testing the hypothesis on the value of the conditional variance at a given point.
Unlike existing methods, the proposed one allows to account not only for the value of the variance itself but also for the uncertainty of the corresponding variance predictor.
arXiv Detail & Related papers (2023-09-28T13:04:11Z) - Linked shrinkage to improve estimation of interaction effects in
regression models [0.0]
We develop an estimator that adapts well to two-way interaction terms in a regression model.
We evaluate the potential of the model for inference, which is notoriously hard for selection strategies.
Our models can be very competitive to a more advanced machine learner, like random forest, even for fairly large sample sizes.
arXiv Detail & Related papers (2023-09-25T10:03:39Z) - Advancing Counterfactual Inference through Nonlinear Quantile Regression [77.28323341329461]
We propose a framework for efficient and effective counterfactual inference implemented with neural networks.
The proposed approach enhances the capacity to generalize estimated counterfactual outcomes to unseen data.
Empirical results conducted on multiple datasets offer compelling support for our theoretical assertions.
arXiv Detail & Related papers (2023-06-09T08:30:51Z) - Vector-Valued Least-Squares Regression under Output Regularity
Assumptions [73.99064151691597]
We propose and analyse a reduced-rank method for solving least-squares regression problems with infinite dimensional output.
We derive learning bounds for our method, and study under which setting statistical performance is improved in comparison to full-rank method.
arXiv Detail & Related papers (2022-11-16T15:07:00Z) - Trustworthy Multimodal Regression with Mixture of Normal-inverse Gamma
Distributions [91.63716984911278]
We introduce a novel Mixture of Normal-Inverse Gamma distributions (MoNIG) algorithm, which efficiently estimates uncertainty in principle for adaptive integration of different modalities and produces a trustworthy regression result.
Experimental results on both synthetic and different real-world data demonstrate the effectiveness and trustworthiness of our method on various multimodal regression tasks.
arXiv Detail & Related papers (2021-11-11T14:28:12Z) - Communication-Efficient Distributed Quantile Regression with Optimal
Statistical Guarantees [2.064612766965483]
We address the problem of how to achieve optimal inference in distributed quantile regression without stringent scaling conditions.
The difficulties are resolved through a double-smoothing approach that is applied to the local (at each data source) and global objective functions.
Despite the reliance on a delicate combination of local and global smoothing parameters, the quantile regression model is fully parametric.
arXiv Detail & Related papers (2021-10-25T17:09:59Z) - Heavy-tailed Streaming Statistical Estimation [58.70341336199497]
We consider the task of heavy-tailed statistical estimation given streaming $p$ samples.
We design a clipped gradient descent and provide an improved analysis under a more nuanced condition on the noise of gradients.
arXiv Detail & Related papers (2021-08-25T21:30:27Z) - Statistical Inference for High-Dimensional Linear Regression with
Blockwise Missing Data [13.48481978963297]
Blockwise missing data occurs when we integrate multisource or multimodality data where different sources or modalities contain complementary information.
We propose a computationally efficient estimator for the regression coefficient vector based on carefully constructed unbiased estimating equations.
Numerical studies and application analysis of the Alzheimer's Disease Neuroimaging Initiative data show that the proposed method performs better and benefits more from unsupervised samples than existing methods.
arXiv Detail & Related papers (2021-06-07T05:12:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.